

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to <u>www.cypress.com/pcn</u>.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

MB95810K Series

New 8FX 8-bit Microcontrollers

The MB95810K Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of these series contain a variety of peripheral resources.

Features

- F²MC-8FX CPU core
 - □ Instruction set optimized for controllers
 - · Multiplication and division instructions
 - · 16-bit arithmetic operations
 - · Bit test branch instructions
 - Bit manipulation instructions, etc.
- Clock
 - Selectable main clock source
 - Main oscillation clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz)
 - External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)
 - Main CR clock (4 MHz $\pm 2\%$)
 - Main CR PLL clock
 - The main CR PLL clock frequency becomes 8 MHz $\pm 2\%$ when the PLL multiplication rate is 2.
 - The main CR PLL clock frequency becomes 10 MHz $\pm 2\%$ when the PLL multiplication rate is 2.5.
 - The main CR PLL clock frequency becomes 12 MHz $\pm 2\%$ when the PLL multiplication rate is 3.
 - The main CR PLL clock frequency becomes 16 MHz $\pm 2\%$ when the PLL multiplication rate is 4.
 - Selectable subclock source
 - Suboscillation clock (32.768 kHz)
 - External clock (32.768 kHz)
 - Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz)
- Timer
 - \square 8/16-bit composite timer \times 2 channels
 - □ 8/16-bit PPG × 2 channels
 - □ 16-bit PPG timer × 2 channels
 - \Box 16-bit reload timer \times 1 channel
 - Time-base timer × 1 channel
 - Watch prescaler × 1 channel
- UART/SIO × 1 channel
 - Full duplex double buffer
 - Capable of clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer
- I²C bus interface × 1 channel
 - Built-in wake-up function
- LIN-UART
 - Full duplex double buffer
 - Capable of clock asynchronous serial data transfer and clock synchronous serial data transfer
- External interrupt × 12 channels
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)

- Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter × 12 channels
- 8-bit or 10-bit resolution can be selected.
- Low power consumption (standby) modes
 - There are four standby modes as follows:
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
 - In standby mode, two further options can be selected: normal standby mode and deep standby mode.
- I/O port (no. of I/O ports: 58)
 - □ General-purpose I/O ports (CMOS I/O): 54
 - General-purpose I/O ports (N-ch open drain): 4
- On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
- Built-in hardware watchdog timer
- Built-in software watchdog timer
- Power-on reset
 - A power-on reset is generated when the power is switched on.
- Low-voltage detection (LVD) reset circuit
 - The LVD function is enabled by default. For details, see "18.2 Recommended Operating Conditions" in "Electrical Characteristics".
 - The LVD function can be controlled through software.
 - The LVD reset circuit control register (LVDCC) enables or disables the LVD reset.
 - The LVD reset circuit has an internal low-voltage detector. The combination of detection voltage and release voltage can be selected from four options.
- Comparator × 2 channels
 - Built-in dedicated BGR
 - The comparator reference voltage can be selected between the BGR voltage and the comparator pin.
- Clock supervisor counter
- Built-in clock supervisor counter
- Dual operation Flash memory
 - The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.
- Flash memory security function
- Protects the content of the Flash memory.

- Cypress Semiconductor Corporation Document Number: 002-04694 Rev. *B
- 198 Champion Court
- San Jose, CA 95134-1709 408-943-2600 Revised August 7, 2017

Contents

Features	1
1. Product Line-up	3
2. Packages And Corresponding Products	5
3. Differences Among Products And Notes On	
Product Selection	
4. Pin Assignment	6
5. Pin Functions	7
6. I/O Circuit Type	11
7. Handling Precautions	13
7.1 Precautions for Product Design	13
7.2 Precautions for Package Mounting	14
7.3 Precautions for Use Environment	
8. Notes On Device Handling	16
9. Pin Connection	17
10. Block Diagram	19
11. CPU Core	
12. Memory Space	21
12.1 I/O area (addresses: 0x0000 to 0x007F)	
12.2 Extended I/O area	
(addresses: 0x0F80 to 0x0FFF)	21
12.3 Data area	21
12.4 Program area	21
12.5 Memory space map	22
13. Areas For Specific Applications	23
14. I/O Map	24

15. I/O Ports	. 30
15.1 Port 0	. 31
15.2 Port 1	. 34
15.3 Port 2	. 39
15.4 Port 3	. 42
15.5 Port 4	. 48
15.6 Port 5	. 51
15.7 Port 6	. 55
15.8 Port 7	
15.9 Port 8	. 63
15.10 Port E	
15.11 Port F	
15.12 Port G	. 72
16. Interrupt Source Table	. 74
17. Pin States In Each Mode	. 75
18. Electrical Characteristics	. 78
18.1 Absolute Maximum Ratings	. 78
18.2 Recommended Operating Conditions	. 80
18.3 DC Characteristics	
18.4 AC Characteristics	. 84
18.5 A/D Converter	104
18.6 Flash Memory Program/Erase Characteristics	108
19. Sample Characteristics	109
20. Ordering Information	116
21. Package Dimension	117
22. Major Changes In This Edition	119
Document History Page	
Sales, Solutions, and Legal Information	

1. Product Line-up

Part number	MB95F814K	MB95F816K	MB95F818K			
Parameter	MD33F014K	MIDJJF010K	MB35F0 IOK			
Туре		Flash memory product				
Clock supervisor counter	It supervises the main clock oscilla	ation and the subclock oscillation.				
Flash memory capacity	20 Kbyte	36 Kbyte	60 Kbyte			
RAM capacity	512 bytes	1 Kbyte	2 Kbyte			
Power-on reset		Yes				
Low-voltage detection reset		Controlled through software				
Reset input		Selected through software				
CPU functions	 Number of basic instructions : 136 Instruction bit length : 8 bits Instruction length : 1 to 3 bytes Data bit length : 1, 8 and 16 bits Minimum instruction execution time : 61.5 ns (machine clock frequency = 16.25 MHz) Interrupt processing time : 0.6 µs (machine clock frequency = 16.25 MHz) 					
General- purpose I/O	I/O port : 58 CMOS I/O : 54 N-ch open drain : 4					
Time-base timer	Interval time: 0.256 ms to 8.3 s (e	xternal clock frequency = 4 MHz)				
Hardware/ software watchdog timer	 Reset generation cycle Main oscillation clock at 10 MF The sub-CR clock can be used a 		e watchdog timer.			
Wild register	It can be used to replace 3 bytes of	of data.				
LIN-UART	 A wide range of communication speed can be selected by a dedicated reload timer. It has a full duplex double buffer. Both clock synchronous serial data transfer and clock asynchronous serial data transfer are enabled. The LIN function can be used as a LIN master or a LIN slave. 					
8/10-bit	12 channels					
A/D converter	8-bit or 10-bit resolution can be se	elected.				
	2 channels					
8/16-bit composite timer	 The timer can be configured as an "8-bit timer × 2 channels" or a "16-bit timer × 1 channel". It has the following functions: interval timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave. 					
External	12 channels					
interrupt	 Interrupt by edge detection (The rising edge, falling edge, and both edges can be selected.) It can be used to wake up the device from different standby modes. 					

Part number Parameter	MB95F814K	MB95F8 [.]	16K	МВ	395F818K		
On-chip debug	1-wire serial controlIt supports serial writing (asynch	nronous mode).					
UART/SIO	 1 channel Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), an internal baud rate generator and an error detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Both clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer are enabled. 						
l²C bus interface	 1 channel Master/slave transmission and r It has the following functions: bu function, wake-up function, and 	s error function, arb					
	2 channelsEach channel can be used as anThe counter operating clock can				channel".		
16-bit PPG timer	 2 channels PWM mode and one-shot mode The counter operating clock can It supports external trigger start. 	be selected from e		urces.			
16-bit reload timer	 1 channel Two clock modes and two counter operating modes are available to use. It can output square wave. Count clock: it can be selected from internal clocks (seven types) and external clocks. Two counter operating modes: reload mode and one-shot mode 						
Watch counter	 Count clock: it can be selected f The counter value can be select the clock source of one second 	ed from 0 to 63. (Th	ne watch cou	nter can count fo	or one minute when		
Watch prescaler	Eight different time intervals can b	e selected.					
Comparator	2 channels The reference voltage of each channel can be selected between the BGR voltage and the comparator pin.						
Flash memory	 It supports automatic programming (Embedded Algorithm), and program/erase/erase-suspend/erase-resume commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Flash security feature for protecting the content of the Flash memory 						
	Number of program/erase cyc Data retention time	les 1000 20 years	10000 10 years	100000 5 years			

Part number Parameter	MB95F814K	MB95F816K	MB95F818K			
Standby mode	There are four standby modes as follows: Stop mode Sleep mode Watch mode Time-base timer mode n standby mode, two further options can be selected: normal standby mode and deep standby mode					
Package	FPT-64P-M38 FPT-64P-M39					

2. Packages And Corresponding Products

Part number Package	MB95F814K	MB95F816K	MB95F818K
FPT-64P-M38	О	О	О
FPT-64P-M39	0	0	0

O: Available

3. Differences Among Products And Notes On Product Selection

Current consumption

When using the on-chip debug function, take account of the current consumption of Flash program/erase. For details of current consumption, see "Electrical Characteristics".

Package

For details of information on each package, see "Packages And Corresponding Products" and "Package Dimension".

Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of operating voltage, see "Electrical Characteristics".

• On-chip debug function

The on-chip debug function requires that Vcc, Vss and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 25 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in "New 8FX MB95810K Series Hardware Manual".

4. Pin Assignment

*: TRG0 and ADTG can be mapped to either P13 or P83 by using the SYSC register.

5. Pin Functions

Pin no.	Pin name	I/O circuit			I/O type		
Fill IIO.	Finname	type*1	Function	Input	Output	OD *2	PU *3
1	AVcc	—	Analog power supply pin for 8/10-bit A/D converter	—	_	_	_
2	AVR	_	Reference input pin for 8/10-bit A/D converter	_	_	_	_
3	PE3	F	General-purpose I/O port	Hysteresis	CMOS		0
3	INT13		External interrupt input pin	nysteresis	CIVIOS		0
4	PE2	F	General-purpose I/O port	Hysteresis	CMOS		0
7	INT12		External interrupt input pin	Trysteresis	CIVIOS		0
5	PE1	F	General-purpose I/O port	Hysteresis	CMOS		0
5	INT11		External interrupt input pin	Tysleresis	CIVIOS		0
6	PE0	F	General-purpose I/O port	Hysteresis	CMOS		0
0	INT10		External interrupt input pin	Trysteresis	CIVIOS		0
	P83		General-purpose I/O port				
7	TRG0*4	F	16-bit PPG timer ch. 0 trigger input pin	Hysteresis	sis CMOS	_	0
	ADTG*4		8/10-bit A/D converter trigger input pin				
8	P82	F	General-purpose I/O port	Hysteresis	CMOS		0
9	P81	F	General-purpose I/O port	Hysteresis	CMOS		0
10	P80	F	General-purpose I/O port	Hysteresis	CMOS		0
	P71		General-purpose I/O port	I have to see a la	01400		0
11	TIO	F	16-bit reload timer ch. 0 input pin	Hysteresis	CMOS	_	0
40	P70	-	General-purpose I/O port		01400		0
12	TO0	F	16-bit reload timer ch. 0 output pin	Hysteresis	CMOS	_	0
13	P72	F	General-purpose I/O port	Hysteresis	CMOS		0
4.4	PF0	_	General-purpose I/O port	L lucata na alia	01400		
14	X0	В	Main clock input oscillation pin	Hysteresis	CMOS		
45	PF1	Р	General-purpose I/O port	Lhustarasia			
15	X1	В	Main clock I/O oscillation pin	Hysteresis	CMOS		
16	Vss	_	Power supply pin (GND)	_		—	—
17	Vcc	_	Power supply pin	_		—	—
18	С	—	Decoupling capacitor connection pin	_	—	_	
19	PG2	С	General-purpose I/O port	Hystoropia	CMOS		0
19	X1A		Subclock I/O oscillation pin	Hysteresis	CMOS		0
20	PG1	С	General-purpose I/O port	Hystoropic	CMOS		0
20	X0A		Subclock input oscillation pin	Hysteresis	CIVIUS		0
21	PF2	A	General-purpose I/O port	Hysteresis	CMOS		
21	RST		Reset pin	1 1931010315		0	

Diana		I/O circuit	From Aligne		I/O type		
Pin no.	Pin name	type*1	Function	Input	Output	OD*2	PU *3
22	P00	D	General-purpose I/O port	Hysteresis	sis CMOS —		0
22	INT00		External interrupt input pin	Tysteresis			0
23	P01	D	General-purpose I/O port	Llustaragia	CMOS		0
23	INT01	D	External interrupt input pin	Hysteresis	CMOS	_	0
24	P02	D	General-purpose I/O port	Hysteresis	CMOS		0
24	INT02		External interrupt input pin	пузіегезіз	CIVIOS		0
25	P03	D	General-purpose I/O port	Hyptoropia	CMOS		0
20	INT03		External interrupt input pin	Hysteresis	CIVIOS	_	0
26	P04	D	General-purpose I/O port	Uveteropie	CMOS		0
26	INT04	D	External interrupt input pin	Hysteresis	CMOS	_	0
27	P05	D	General-purpose I/O port	Uveteresia	CMOS		0
27	INT05	D	External interrupt input pin	Hysteresis	CMOS	_	0
28	P06	D	General-purpose I/O port	Uveteronia	CMOS		0
20	INT06	D	External interrupt input pin	Hysteresis	CIVIOS	_	0
20	P07		General-purpose I/O port	Lhustarasia	01400		0
29	INT07	D	External interrupt input pin	Hysteresis	CMOS	_	0
20	P10		General-purpose I/O port	CMOS	CMOS	—	
30	UI0	.	UART/SIO ch. 0 data input pin				0
31	P11	F	General-purpose I/O port	Hyptoropia	CMOS		0
31	UO0		UART/SIO ch. 0 data output pin	Hysteresis	CIVIOS	_	0
20	P12	0	General-purpose I/O port	Lhustorosia	01400	0	
32	DBG	G	DBG input pin	Hysteresis	CMOS	0	
	P13		General-purpose I/O port				
22	UCK0		UART/SIO ch. 0 clock I/O pin	Lhustorosia	01400		0
33	TRG0*4	F	16-bit PPG timer ch. 0 trigger input pin	Hysteresis	CMOS	_	0
	ADTG*4		8/10-bit A/D converter trigger input pin				
24	P14	Г	General-purpose I/O port	Uveteresia	CMOS		0
34	PPG0	F	16-bit PPG timer ch. 0 output pin	Hysteresis	CMOS	_	0
25	P20	F	General-purpose I/O port	Uveteresia	CMOS		0
35	PPG00		8/16-bit PPG ch. 0 output pin	Hysteresis	CMOS	_	0
26	P21	F	General-purpose I/O port	Uvotorooia	CMOS		0
36	PPG01		8/16-bit PPG ch. 0 output pin	Hysteresis	CMOS	—	0
27	P22		General-purpose I/O port	Luctoresia	CMO0	—	
37	TO00	F	8/16-bit composite timer ch. 0 output pin	Hysteresis	CMOS		0
20	P23		General-purpose I/O port	Hustorssia	<u>CMOS</u>		
38	TO01	F	8/16-bit composite timer ch. 0 output pin	Hysteresis	CMOS —		0

Pin no.	Pin name	I/O circuit	Function		I/O type		
Fill IIO.	Finname	type*1	Function	Input	Output	OD*2	PU*3
	P24		General-purpose I/O port				
39	EC0	F	8/16-bit composite timer ch. 0 clock input pin	Hysteresis	CMOS	_	0
40	P50	н	General-purpose I/O port	CMOS	CMOS	0	
40	SCL	11	I ² C bus interface ch. 0 clock I/O pin	CINOS	CIVICO	0	
41	P51	Н	General-purpose I/O port	CMOS	CMOS	0	
41	SDA	11	I²C bus interface ch. 0 data I/O pin	CINOS	CIVICS	0	
42	P52	F	General-purpose I/O port	Hysteresis	CMOS		0
42	PPG1	I	16-bit PPG timer ch. 1 output pin	11931010313	CIVIOS		U
43	P53	F	General-purpose I/O port	Hysteresis	CMOS		0
43	TRG1	Г	16-bit PPG timer ch. 1 trigger input pin	TIYSLETESIS	01003		0
44	P60	F	General-purpose I/O port	Hysteresis	CMOS		0
44	PPG10	Г	8/16-bit PPG ch. 1 output pin	Tysleresis	CIVIOS		0
45	P61	F	General-purpose I/O port	Hysteresis CMO			0
45	PPG11	Г	8/16-bit PPG ch. 1 output pin	TIYSLETESIS	01003		0
46	P62	F	General-purpose I/O port	Hyptoropio	CMOS		0
40	TO10	Г	8/16-bit composite timer ch. 1 output pin	Hysteresis	CIVIOS		0
47	P63	F	General-purpose I/O port	Hyptoropio	CMOS		0
47	TO11	Г	8/16-bit composite timer ch. 1 output pin	Hysteresis	CIVIOS		0
	P64		General-purpose I/O port				
48	EC1	F	8/16-bit composite timer ch. 1 clock input pin	Hysteresis	CMOS	-	0
49	P65	F	General-purpose I/O port	Uveterecie	CMOS		0
49	SCK	Г	LIN-UART clock I/O pin	Hysteresis	CIVIOS		0
50	P66	F	General-purpose I/O port	Hysteresis	CMOS		0
50	SOT	Г	LIN-UART data output pin	TIYSLETESIS	CIVIOS		0
51	P67	I .	General-purpose I/O port	CMOS	CMOS		0
51	SIN	I	LIN-UART data input pin	CINOS	CIVIOS		U
52	P43	E	General-purpose I/O port	Hysteresis/	CMOS		0
52	AN11		8/10-bit A/D converter analog input pin	analog	CIVIOS		0
53	P42	E	General-purpose I/O port	Hysteresis/	CMOS		0
55	AN10		8/10-bit A/D converter analog input pin	analog	CIVIOS		0
54	P41	E	General-purpose I/O port	Hysteresis/	CMOS		0
54	AN09		8/10-bit A/D converter analog input pin	analog	CIVIUS		0
EE	P40	Г	General-purpose I/O port	Hysteresis/	CMOS		
55	AN08	E	8/10-bit A/D converter analog input pin	analog	CMOS		0

Pin no.	Pin name	I/O circuit	Function		I/O type		
FIII IIO.	Finname	type*1	Function	Input	Output	OD *2	PU *3
56	P37	E	General-purpose I/O port	Hysteresis/	CMOS		0
50	AN07	L	8/10-bit A/D converter analog input pin	analog	CIVICO		0
57	P36	E	General-purpose I/O port	Hysteresis/	CMOS		0
57	AN06		8/10-bit A/D converter analog input pin	analog	CIVIOS		0
	P35		General-purpose I/O port				
58	AN05	E	8/10-bit A/D converter analog input pin	Hysteresis/ analog	CMOS		0
	CMP1_O		Comparator ch. 1 digital output pin	unalog			
	P34		General-purpose I/O port				
59	AN04	E	8/10-bit A/D converter analog input pin	Hysteresis/	смоѕ	—	0
00	CMP1_P		Comparator ch. 1 non-inverting analog input (positive input) pin	analog	CINCO		Ŭ
	P33		General-purpose I/O port		CMOS		
60	AN03	E	8/10-bit A/D converter analog input pin	Hysteresis/			0
	CMP1_N		Comparator ch. 1 inverting analog input (negative input) pin	analog			0
	P32		General-purpose I/O port				
61	AN02	E	8/10-bit A/D converter analog input pin	Hysteresis/ analog	CMOS		0
	CMP0_O		Comparator ch. 0 digital output pin	unulog			
	P31		General-purpose I/O port				
62	AN01	E	8/10-bit A/D converter analog input pin	Hysteresis/	CMOS		0
	CMP0_P		Comparator ch. 0 non-inverting analog input (positive input) pin	analog	omee		0
	P30		General-purpose I/O port				
63	AN00	E	8/10-bit A/D converter analog input pin	Hysteresis/	CMOS		0
	CMP0_N		Comparator ch. 0 inverting analog input (negative input) pin	analog			9
64	AVss	_	8/10-bit A/D converter power supply pin (GND)				_

(O: Available) *1: For the I/O circuit types, see "I/O Circuit Type".

*2: N-ch open drain

*3: Pull-up

*4: TRG0 and ADTG can be mapped to either P13 or P83 by using the SYSC register.

6. I/O Circuit Type

Туре	Circuit		Remarks
D	R C	Pull-up control	CMOS outputHysteresis inputPull-up control
		— Digital output — Digital output	High current output
	₩- N-ch	- Standby control	
		— Hysteresis input	
E	R C	— Pull-up control	CMOS outputHysteresis inputPull-up control
	P-ch	— Digital output	Analog input
	······································	— Digital output	
	▶	— Analog input	
		— A/D control — Standby control	
		— Hysteresis input	
F		— Pull-up control	CMOS outputHysteresis inputPull-up control
	P-ch	— Digital output	
	₩ N-ch	— Digital output	
		— Standby control — Hysteresis input	
G		—— Standby control	 N-ch open drain output Hysteresis input
		—— Hysteresis input	
	Digital output		
Н		— Digital output	N-ch open drain outputCMOS input
		— Standby control	
		— CMOS input	

Туре	Circuit	Remarks
Ι	Pull-up control	CMOS outputCMOS inputPull-up control
	P-ch	
	Digital output	
	W-ch Standby control	
	CMOS input	

7. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

7.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative before-hand.

• Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

• Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

• Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

7.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

• Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

• Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

• Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 M Ω).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

7.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

8. Notes On Device Handling

• Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than Vcc or a voltage lower than Vss is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "18.1 Absolute Maximum Ratings" of "Electrical Characteristics" is applied to the Vcc pin or the Vss pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

- Stabilizing supply voltage
 - Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in Vcc ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard Vcc value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

• Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

9. Pin Connection

· Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latchups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

· Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the Vcc pin and the Vss pin to the power supply and ground outside the device. In addition, connect the current supply source to the Vcc pin and the Vss pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{cc} pin and the V_{ss} pin at a location close to this device.

DBG pin

Connect the DBG pin to an external pull-up resistor of 2 k Ω or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

RST pin

Connect the RST pin to an external pull-up resistor of 2 k $\!\Omega$ or above.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the $\overrightarrow{\text{RST}}$ pin and that between a pull-up resistor and the V_{CC} pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

Analog power supply

Always set the same potential to the AVcc pin and the Vcc pin. When Vcc is larger than AVcc, the current may flow through the AN00 to AN11 pins.

• Treatment of power supply pins on the 8/10-bit A/D converter

Ensure that AVcc is equal to Vcc and AVss equal to Vss even when the 8/10-bit A/D converter is not in use. Noise riding on the AVcc pin may cause accuracy degradation. Therefore, connect a ceramic capacitor of $0.1 \,\mu\text{F}$ (approx.) as a bypass capacitor between the AVcc pin and the AVss pin in the vicinity of this device.

• C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S. For the connection to a decoupling capacitor C_S, see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

Note on serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end of data in order to detect errors. If an error is detected, retransmit the data.

10. Block Diagram

11. CPU Core

· Memory space

The memory space of the MB95810K Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95810K Series are shown below.

· Memory maps

12. Memory Space

The memory space of the MB95810K Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas for specific applications such as general-purpose registers and a vector table.

12.1 I/O area (addresses: 0x0000 to 0x007F)

- This area contains the control registers and data registers for built-in peripheral functions.
- As the I/O area forms part of the memory space, it can be accessed in the same way as the memory. It can also be accessed at high-speed by using direct addressing instructions.

12.2 Extended I/O area (addresses: 0x0F80 to 0x0FFF)

- This area contains the control registers and data registers for built-in peripheral functions.
- As the extended I/O area forms part of the memory space, it can be accessed in the same way as the memory.

12.3 Data area

- Static RAM is incorporated in the data area as the internal data area.
- The internal RAM size varies according to product.
- The RAM area from 0x0090 to 0x00FF can be accessed at high-speed by using direct addressing instructions.
- In MB95F818K, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set.
- In MB95F816K, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set.
- In MB95F814K, the area from 0x0090 to 0x028F is an extended direct addressing area. It can be accessed at highspeed by direct addressing instructions with a direct bank pointer set.
- The area from 0x0100 to 0x01FF can be used as a general-purpose register area.

12.4 Program area

- The Flash memory is incorporated in the program area as the internal program area.
- The Flash memory size varies according to product.
- The area from 0xFFC0 to 0xFFFF is used as the vector table.
- The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register.

12.5 Memory space map

13. Areas For Specific Applications

The general-purpose register area and vector table area are used for the specific applications.

- General-purpose register area (Addresses: 0x0100 to 0x01FF)
 - This area contains the auxiliary registers used for 8-bit arithmetic operations, transfer, etc.
 - As this area forms part of the RAM area, it can also be used as conventional RAM.
 - When the area is used as general-purpose registers, general-purpose register addressing enables high-speed access with short instructions.
- Non-volatile register data area (Addresses: 0xFFBB to 0xFFBF)
 - The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. For details, refer to "CHAPTER 27 NON-VOLATILE REGISTER (NVR) INTERFACE" in "New 8FX MB95810K Series Hardware Manual".
- Vector table area (Addresses: 0xFFC0 to 0xFFFF)
 - This area is used as the vector table for vector call instructions (CALLV), interrupts, and resets.
 - The top of the Flash memory area is allocated to the vector table area. The start address of a service routine is set to an address in the vector table in the form of data.

"Interrupt Source Table" lists the vector table addresses corresponding to vector call instructions, interrupts, and resets.

For details, refer to "CHAPTER 4 RESET", "CHAPTER 5 INTERRUPTS" and "A.2 Special Instruction ■ Special Instruction ● CALLV #vct" in "APPENDIX" in "New 8FX MB95810K Series Hardware Manual".

Direct bank pointer (DP[2:0])	Operand-specified dir	Access area
0bXXX (It does not affect mapping.)	0x0000 to 0x007F	0x0000 to 0x007F
0b000 (initial value)	0x0090 to 0x00FF	0x0090 to 0x00FF
0b001		0x0100 to 0x017F
0b010		0x0180 to 0x01FF
0b011		0x0200 to 0x027F
0b100	0x0080 to 0x00FF	0x0280 to 0x02FF*1
0b101		0x0300 to 0x037F
0b110		0x0380 to 0x03FF
0b111		0x0400 to 0x047F*2

· Direct bank pointer and access area

*1: Due to the memory size limit, the available access area is up to "0x028F" in MB95F814K.

*2: Due to the memory size limit, the available access area is up to "0x047F" in MB95F816K/F818K.

14. I/O Map

Address	Register abbreviation	Register name	R/W	Initial value
0x0000	PDR0	Port 0 data register	R/W	0b0000000
0x0001	DDR0	Port 0 direction register	R/W	0b0000000
0x0002	PDR1	Port 1 data register	R/W	0b0000000
0x0003	DDR1	Port 1 direction register	R/W	0b0000000
0x0004		(Disabled)	_	—
0x0005	WATR	Oscillation stabilization wait time setting register	R/W	0b11111111
0x0006	PLLC	PLL control register	R/W	0b000X0000
0x0007	SYCC	System clock control register	R/W	0bXXX11011
0x0008	STBC	Standby control register	R/W	0b0000000
0x0009	RSRR	Reset source register	R/W	0b000XXXXX
0x000A	TBTC	Time-base timer control register	R/W	0b0000000
0x000B	WPCR	Watch prescaler control register	R/W	0b0000000
0x000C	WDTC	Watchdog timer control register	R/W	0b00XX0000
0x000D	SYCC2	System clock control register 2	R/W	0bXXXX0011
0x000E	PDR2	Port 2 data register	R/W	0b0000000
0x000F	DDR2	Port 2 direction register		0b0000000
0x0010	PDR3	Port 3 data register	R/W	0b0000000
0x0011	DDR3	Port 3 direction register		0b0000000
0x0012	PDR4	Port 4 data register		0b0000000
0x0013	DDR4	Port 4 direction register		0b0000000
0x0014	PDR5	Port 5 data register		0b0000000
0x0015	DDR5	Port 5 direction register		0b0000000
0x0016	PDR6	Port 6 data register		0b0000000
0x0017	DDR6	Port 6 direction register	R/W	0b0000000
0x0018	PDR7	Port 7 data register	R/W	0b0000000
0x0019	DDR7	Port 7 direction register	R/W	0b0000000
0x001A	PDR8	Port 8 data register	R/W	0b0000000
0x001B	DDR8	Port 8 direction register	R/W	0b0000000
0x001C	STBC2	Standby control register 2		0b0000000
0x001D to 0x0024	_	(Disabled)		_
0x0025	PUL8	Port 8 pull-up register		0b0000000
0x0026	PDRE	Port E data register	R/W	0b0000000
0x0027	DDRE	Port E direction register	R/W	0b00000000
0x0028	PDRF	Port F data register	R/W	0b00000000

Address	Register abbreviation	Register name	R/W	Initial value
0x0029	DDRF	Port F direction register		0b0000000
0x002A	PDRG	Port G data register	R/W	0b0000000
0x002B	DDRG	Port G direction register	R/W	0b0000000
0x002C	PUL0	Port 0 pull-up register	R/W	0b0000000
0x002D	PUL1	Port 1 pull-up register	R/W	0b0000000
0x002E	PUL2	Port 2 pull-up register	R/W	0b0000000
0x002F	PUL3	Port 3 pull-up register	R/W	0b00000000
0x0030	PUL4	Port 4 pull-up register	R/W	0b0000000
0x0031	PUL5	Port 5 pull-up register	R/W	0b0000000
0x0032	PUL7	Port 7 pull-up register	R/W	0b0000000
0x0033	PUL6	Port 6 pull-up register	R/W	0b0000000
0x0034	PULE	Port E pull-up register	R/W	0b0000000
0x0035	PULG	Port G pull-up register	R/W	0b0000000
0x0036	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	0b0000000
0x0037	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	0b0000000
0x0038	T11CR1	8/16-bit composite timer 11 status control register 1		0b0000000
0x0039	T10CR1	8/16-bit composite timer 10 status control register 1		0b0000000
0x003A	PC01	8/16-bit PPG timer 01 control register		0b0000000
0x003B	PC00	8/16-bit PPG timer 00 control register	R/W	0b0000000
0x003C	PC11	8/16-bit PPG timer 11 control register		0b0000000
0x003D	PC10	8/16-bit PPG timer 10 control register		0b0000000
0x003E	TMCSRH0	16-bit reload timer control status register (upper) ch. 0		0b0000000
0x003F	TMCSRL0	16-bit reload timer control status register (lower) ch. 0		0b0000000
0x0040, 0x0041	—	(Disabled)	—	—
0x0042	PCNTH0	16-bit PPG status control register (upper) ch. 0	R/W	0b0000000
0x0043	PCNTL0	16-bit PPG status control register (lower) ch. 0	R/W	0b0000000
0x0044	PCNTH1	16-bit PPG status control register (upper) ch. 1	R/W	0b0000000
0x0045	PCNTL1	16-bit PPG status control register (lower) ch. 1	R/W	0b0000000
0x0046, 0x0047		(Disabled)	_	_
0x0048	EIC00	External interrupt circuit control register ch. 0/ch. 1		0b0000000
0x0049	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0b0000000
0x004A	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	0b0000000
0x004B	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	0b0000000
0x004C	EIC01	External interrupt circuit control register ch. 10/ch. 11	R/W	0b0000000
0x004D	EIC11	External interrupt circuit control register ch. 12/ch. 13	R/W	0b0000000
0x004E	LVDR	LVD reset voltage selection ID register	R/W	0b0000000

Address	Register abbreviation	Register name	R/W	Initial value
0x004F	LVDCC	LVD reset circuit control register	R/W	0b00000001
0x0050	SCR	LIN-UART serial control register	R/W	0b0000000
0x0051	SMR	LIN-UART serial mode register	R/W	0b0000000
0x0052	SSR	LIN-UART serial status register	R/W	0b00001000
0x0053	RDR	LIN-UART receive data register R/W		0b00000000
0x0055	TDR	LIN-UART transmit data register		0000000000000
0x0054	ESCR	LIN-UART extended status control register	R/W	0b0000100
0x0055	ECCR	LIN-UART extended communication control register	R/W	0b000000XX
0x0056	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0b0000000
0x0057	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0b00100000
0x0058	SSR0	UART/SIO serial status and data register ch. 0	R/W	0b0000001
0x0059	TDR0	UART/SIO serial output data register ch. 0	R/W	0b0000000
0x005A	RDR0	UART/SIO serial input data register ch. 0	R	0b0000000
0x005B	CMR0	Comparator control register ch. 0	R/W	0b11000101
0x005C	CMR1	Comparator control register ch. 1	R/W	0b11000101
0x005D to 0x005F	_	(Disabled)		_
0x0060	IBCR00	I ² C bus control register 0 ch. 0	R/W	0b0000000
0x0061	IBCR10	I ² C bus control register 1 ch. 0	R/W	0b0000000
0x0062	IBSR0	I ² C bus status register ch. 0	R/W	0b0000000
0x0063	IDDR0	I ² C data register ch. 0	R/W	0b0000000
0x0064	IAAR0	I ² C address register ch. 0	R/W	0b0000000
0x0065	ICCR0	I ² C clock control register ch. 0	R/W	0b0000000
0x0066 to 0x006B	_	(Disabled)	_	_
0x006C	ADC1	8/10-bit A/D converter control register 1	R/W	0b0000000
0x006D	ADC2	8/10-bit A/D converter control register 2	R/W	0b0000000
0x006E	ADDH	8/10-bit A/D converter data register (upper)	R/W	0b0000000
0x006F	ADDL	8/10-bit A/D converter data register (lower)	R/W	0b0000000
0x0070	WCSR	Watch counter control register	R/W	0b0000000
0x0071	FSR2	Flash memory status register 2	R/W	0b0000000
0x0072	FSR	Flash memory status register	R/W	0b000X0000
0x0073	SWRE0	Flash memory sector write control register 0	R/W	0b00000000
0x0074	FSR3	Flash memory status register 3	R	0b000XXXXX
0x0075	FSR4	Flash memory status register 4	R/W	0b0000000
0x0076	WREN	Wild register address compare enable register	R/W	0b00000000

Address	Register abbreviation	Register name	R/W	Initial value	
0x0077	WROR	Wild register data test setting register	R/W	0b0000000	
0x0078	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)		_	
0x0079	ILR0	Interrupt level setting register 0	R/W	0b11111111	
0x007A	ILR1	Interrupt level setting register 1	R/W	0b11111111	
0x007B	ILR2	Interrupt level setting register 2	R/W	0b11111111	
0x007C	ILR3	Interrupt level setting register 3	R/W	0b11111111	
0x007D	ILR4	Interrupt level setting register 4	R/W	0b11111111	
0x007E	ILR5	Interrupt level setting register 5	R/W	0b11111111	
0x007F	—	(Disabled)	—	—	
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b0000000	
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b0000000	
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b0000000	
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b0000000	
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b0000000	
0x0F85	WRDR1	Wild register data setting register ch. 1	R/W	0b0000000	
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0b0000000	
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2		0b0000000	
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b0000000	
0x0F89 to		(Disabled)			
0x0F91					
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b0000000	
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	0b0000000	
0x0F94	T01DR	8/16-bit composite timer 01 data register	R/W	0b0000000	
0x0F95	T00DR	8/16-bit composite timer 00 data register	R/W	0b0000000	
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	0600000000	
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	0b0000000	
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b0000000	
0x0F99	T11DR	8/16-bit composite timer 11 data register	<u> </u>		
0x0F9A	T10DR			0b0000000	
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control		0b00000000	
0x0F9C	PPS01	8/16-bit PPG01 cycle setting buffer register	R/W	0b11111111	
0x0F9D	PPS00	8/16-bit PPG00 cycle setting buffer register	R/W	0b11111111	
0x0F9E	PDS01	8/16-bit PPG01 duty setting buffer register	R/W	0b11111111	
0x0F9F	PDS00	8/16-bit PPG00 duty setting buffer register		0b11111111	

Address	Register abbreviation	Register name	R/W	Initial value
0x0FA0	PPS11	8/16-bit PPG11 cycle setting buffer register	R/W	0b11111111
0x0FA1	PPS10	8/16-bit PPG10 cycle setting buffer register	R/W	0b11111111
0x0FA2	PDS11	8/16-bit PPG11 duty setting buffer register	R/W	0b11111111
0x0FA3	PDS10	8/16-bit PPG10 duty setting buffer register	R/W	0b11111111
0x0FA4	PPGS	8/16-bit PPG start register	R/W	0b0000000
0x0FA5	REVC	8/16-bit PPG output inversion register	R/W	0b0000000
0,0000	TMRH0	16-bit reload timer timer register (upper) ch. 0	R/W	060000000
0x0FA6	TMRLRH0	16-bit reload timer reload register (upper) ch. 0	- K/VV	0b00000000
0x0FA7	TMRL0	16-bit reload timer timer register (lower) ch. 0	R/W	0b00000000
UXUFA/	TMRLRL0	16-bit reload timer reload register (lower) ch. 0	- K/VV	0000000000
0x0FA8, 0x0FA9	_	(Disabled)	_	—
0x0FAA	PDCRH0	16-bit PPG downcounter register (upper) ch. 0	R	0b0000000
0x0FAB	PDCRL0	16-bit PPG downcounter register (lower) ch. 0	R	0b0000000
0x0FAC	PCSRH0	16-bit PPG cycle setting buffer register (upper) ch. 0	cycle setting buffer register (upper) ch. 0 R/W	
0x0FAD	PCSRL0	16-bit PPG cycle setting buffer register (lower) ch. 0 R/W		0b11111111
0x0FAE	PDUTH0	16-bit PPG duty setting buffer register (upper) ch. 0	R/W	0b11111111
0x0FAF	PDUTL0	16-bit PPG duty setting buffer register (lower) ch. 0 R/W		0b11111111
0x0FB0	PDCRH1	16-bit PPG downcounter register (upper) ch. 1	R	0b0000000
0x0FB1	PDCRL1	16-bit PPG downcounter register (lower) ch. 1	R	0b0000000
0x0FB2	PCSRH1	16-bit PPG cycle setting buffer register (upper) ch. 1	R/W	0b11111111
0x0FB3	PCSRL1	16-bit PPG cycle setting buffer register (lower) ch. 1	R/W	0b11111111
0x0FB4	PDUTH1	16-bit PPG duty setting buffer register (upper) ch. 1	R/W	0b11111111
0x0FB5	PDUTL1	16-bit PPG duty setting buffer register (lower) ch. 1	R/W	0b11111111
0x0FB6 to 0x0FBB		(Disabled)	_	_
0x0FBC	BGR1	LIN-UART baud rate generator register 1	R/W	0b0000000
0x0FBD	BGR0	LIN-UART baud rate generator register 0	R/W	0b0000000
0x0FBE	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0		0b00000000
0x0FBF	BRSR0	LIART/SIO dedicated baud rate generator baud rate		0b0000000
0x0FC0, 0x0FC1		(Disabled)	-	—
0x0FC2	AIDRH	A/D input disable register (upper)	R/W	0b0000000
0x0FC3	AIDRL	A/D input disable register (lower)	R/W	0b0000000
0x0FC4	LVDPW	LVD reset circuit password register		0b0000000

Address	Register abbreviation	Register name	R/W	Initial value
0x0FC5 to 0x0FE2	_	(Disabled)	_	_
0x0FE3	WCDR	Watch counter data register	R/W	0b00111111
0x0FE4	CRTH	Main CR clock trimming register (upper)	R/W	0b000XXXXX
0x0FE5	CRTL	Main CR clock trimming register (lower)	R/W	0b000XXXXX
0x0FE6	_	(Disabled)	—	—
0x0FE7	CRTDA	Main CR clock temperature dependent adjustment register		0b000XXXXX
0x0FE8	SYSC	System configuration register		0b11000011
0x0FE9	CMCR	Clock monitoring control register	R/W	0b0000000
0x0FEA	CMDR	Clock monitoring data register		0b0000000
0x0FEB	WDTH	Watchdog timer selection ID register (upper)	R	0bXXXXXXXX
0x0FEC	WDTL	Watchdog timer selection ID register (lower)	R	0bXXXXXXXX
0x0FED, 0x0FEE	_	(Disabled)		_
0x0FEF	WICR	Interrupt pin selection circuit control register	R/W	0b01000000
0x0FF0 to 0x0FFF	_	(Disabled)	_	_

- R/W access symbols
 - R/W : Readable/Writable
 - R : Read only
- Initial value symbols
 - 0 : The initial value of this bit is "0".
 - 1 : The initial value of this bit is "1".
 - X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

15. I/O Ports

List of port registers

Register name	Read/Write	Initial value	
Port 0 data register	PDR0	R, RM/W	0b0000000
Port 0 direction register	DDR0	R/W	0b0000000
Port 1 data register	PDR1	R, RM/W	0b0000000
Port 1 direction register	DDR1	R/W	0b0000000
Port 2 data register	PDR2	R, RM/W	0b0000000
Port 2 direction register	DDR2	R/W	0b0000000
Port 3 data register	PDR3	R, RM/W	0b0000000
Port 3 direction register	DDR3	R/W	0b0000000
Port 4 data register	PDR4	R, RM/W	0b0000000
Port 4 direction register	DDR4	R/W	0b0000000
Port 5 data register	PDR5	R, RM/W	0b0000000
Port 5 direction register	DDR5	R/W	0b0000000
Port 6 data register	PDR6	R, RM/W	0b0000000
Port 6 direction register	DDR6	R/W	0b0000000
Port 7 data register	PDR7	R, RM/W	0b0000000
Port 7 direction register	DDR7	R/W	0b0000000
Port 8 data register	PDR8	R, RM/W	0b0000000
Port 8 direction register	DDR8	R/W	0b0000000
Port E data register	PDRE	R, RM/W	0b0000000
Port E direction register	DDRE	R/W	0b0000000
Port F data register	PDRF	R, RM/W	0b0000000
Port F direction register	DDRF	R/W	0b0000000
Port G data register	PDRG	R, RM/W	0b0000000
Port G direction register	DDRG	R/W	0b0000000
Port 0 pull-up register	PUL0	R/W	0b0000000
Port 1 pull-up register	PUL1	R/W	0b0000000
Port 2 pull-up register	PUL2	R/W	0b0000000
Port 3 pull-up register	PUL3	R/W	0b0000000
Port 4 pull-up register	PUL4	R/W	0b0000000
Port 5 pull-up register	PUL5	R/W	0b0000000
Port 6 pull-up register	PUL6	R/W	0b0000000
Port 7 pull-up register	PUL7	R/W	0b0000000
Port 8 pull-up register	PUL8	R/W	0b0000000
Port E pull-up register	PULE	R/W	0b0000000
Port G pull-up register	PULG	R/W	0b0000000

Register name	Read/Write	Initial value	
A/D input disable register (upper)	AIDRH	R/W	0b0000000
A/D input disable register (lower)	AIDRL	R/W	0b0000000

R/W : Readable/writable (The read value is the same as the write value.)

R, RM/W : Readable/writable (The read value is different from the write value. The write value is read by the readmodify-write (RMW) type of instruction.)

15.1 Port 0

Port 0 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.1.1 Port 0 configuration

Port 0 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 0 data register (PDR0)
- Port 0 direction register (DDR0)
- Port 0 pull-up register (PUL0)
- 15.1.2 Block diagrams of port 0
- P00/INT00 pin

This pin has the following peripheral function:

- External interrupt input pin (INT00)
- P01/INT01 pin
 - This pin has the following peripheral function:
 - External interrupt input pin (INT01)
- P02/INT02 pin
 - This pin has the following peripheral function: External interrupt input pin (INT02)
- P03/INT03 pin
 - This pin has the following peripheral function:
 - External interrupt input pin (INT03)
- P04/INT04 pin
 - This pin has the following peripheral function:
 - External interrupt input pin (INT04)
- P05/INT05 pin
 - This pin has the following peripheral function:
 - External interrupt input pin (INT05)
- P06/INT06 pin
 - This pin has the following peripheral function:
 - External interrupt input pin (INT06)
- P07/INT07 pin
 - This pin has the following peripheral function:

• External interrupt input pin (INT07)

• Block diagram of P00/INT00, P01/INT01, P02/INT02, P03/INT03, P04/INT04, P05/INT05, P06/INT06 and P07/INT07

15.1.3 Port 0 registers

Port 0 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR0	0	Pin state is "L" level.	PDR0 value is "0".	As output port, outputs "L" level.			
FDRU	1 Pin state is "H" level		PDR0 value is "1".	As output port, outputs "H" level.			
DDR0	0		Port input enabled				
DDRU	1		Port output enabled				
PUL0	0		Pull-up disabled				
FOLO	1		Pull-up enabled				

Correspondence between registers and pins for port 0

		Correspondence between related register bits and pins							
Pin name	P07	P06	P05	P04	P03	P02	P01	P00	
PDR0									
DDR0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
PUL0									

15.1.4 Port 0 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR0 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR0 register to external pins.
 - If data is written to the PDR0 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR0 register returns the PDR0 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR0 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR0 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR0 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR0 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR0 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR0 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR0 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT00 to INT07), the input is enabled and not
 blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an external interrupt input pin
 - Set the bit in the DDR0 register corresponding to the external interrupt input pin to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin.
- Operation of the pull-up register

Setting the bit in the PUL0 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL0 register.

15.2 Port 1

Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.2.1 Port 1 configuration

- Port 1 is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port 1 data register (PDR1)
- Port 1 direction register (DDR1)
- Port 1 pull-up register (PUL1)

15.2.2 Block diagrams of port 1

- P10/UI0 pin
 - This pin has the following peripheral function:
 - UART/SIO ch. 0 data input pin (UI0)

Block diagram of P10/UI0

• P11/UO0 pin

- This pin has the following peripheral function:
- UART/SIO ch. 0 data output pin (UO0)

Block diagram of P11/UO0

• P12/DBG pin

This pin has the following peripheral function:

- DBG input pin (DBG)
- Block diagram of P12/DBG

• P13/UCK0/TRG0/ADTG* pin

This pin has the following peripheral functions:

- UART/SIO ch. 0 clock I/O pin (UCK0)
- 16-bit PPG timer ch. 0 trigger input pin (TRG0)
- 8/10-bit A/D converter trigger input pin (ADTG)
- *: TRG0 and ADTG can be mapped to either P13 or P83 by using the SYSC register.

Block diagram of P13/UCK0/TRG0/ADTG

• P14/PPG0 pin

This pin has the following peripheral function:

• 16-bit PPG timer ch. 0 output pin (PPG0)

Block diagram of P14/PPG0

15.2.3 Port 1 registers

•	Port 1	register functions	

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write				
PDR1	0	Pin state is "L" level.	PDR1 value is "0".	As output port, outputs "L" level.				
FDIT	1	Pin state is "H" level.	PDR1 value is "1".	As output port, outputs "H" level.*				
DDR1	0		Port input enabled					
DURT	1	Port output enabled						
PUL1	0		Pull-up disabled					
I OLI	1		Pull-up enabled					

*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port 1

		Correspondence between related register bits and pins							
Pin name	-	-	-	P14	P13	P12	P11	P10	
PDR1									
DDR1	-	-	-	bit4	bit3	bit2*	bit1	bit0	
PUL1									

*: Though P12 has no pull-up function, bit2 in the PUL1 register can still be accessed. The operation of P12 is not affected by the setting of bit2 in the PUL1 register.

15.2.4 Port 1 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR1 register to external pins.
 - If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR1 register returns the PDR1 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR1 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

Operation at reset If the CPU is reset, all bits in the DDR1 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P10/UI0 and P13/UCK0/TRG0/ADTG is enabled by the external interrupt control
 register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR)
 of the interrupt pin selection circuit, the input is enabled and is not blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- · Operation of the pull-up register

Setting the bit in the PUL1 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL1 register.

15.3 Port 2

Port 2 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.3.1 Port 2 configuration

- Port 2 is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port 2 data register (PDR2)
- Port 2 direction register (DDR2)
- Port 2 pull-up register (PUL2)

15.3.2 Block diagrams of port 2

- P20/PPG00 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 0 output pin (PPG00)
- P21/PPG01 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 0 output pin (PPG01)
- P22/TO00 pin
 - This pin has the following peripheral function:
 - 8/16-bit composite timer ch. 0 output pin (TO00)
- P23/TO01 pin
 - This pin has the following peripheral function:
 - 8/16-bit composite timer ch. 0 output pin (TO01)

• Block diagram of P20/PPG00, P21/PPG01, P22/TO00 and P23/TO01

• P24/EC0 pin

This pin has the following peripheral function:

• 8/16-bit composite timer ch. 0 clock input pin (EC0)

Block diagram of P24/EC0

15.3.3 Port 2 registers

Port 2 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR2	0	Pin state is "L" level.	PDR2 value is "0".	As output port, outputs "L" level.			
FDRZ	1	Pin state is "H" level.	PDR2 value is "1".	As output port, outputs "H" level.			
DDR2	0		Port input enabled	ł			
DDRZ	1	Port output enabled					
PUL2	0		Pull-up disabled				
F ULZ	1		Pull-up enabled				

Correspondence between registers and pins for port 2

		Correspondence between related register bits and pins							
Pin name	-	-	-	P24	P23	P22	P21	P20	
PDR2									
DDR2	-	-	-	bit4	bit3	bit2	bit1	bit0	
PUL2									

15.3.4 Port 2 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR2 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR2 register to external pins.
 - If data is written to the PDR2 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR2 register returns the PDR2 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR2 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR2 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR2 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR2 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR2 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR2 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR2 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.

Operation at reset If the CPU is reset, all bits in the DDR2 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR2 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P24/EC0 is enabled by the external interrupt control register ch. 0 (EIC00) of the
 external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection
 circuit, the input is enabled and is not blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PUL2 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL2 register.

15.4 Port 3

Port 3 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.4.1 Port 3 configuration

- Port 3 is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port 3 data register (PDR3)
- Port 3 direction register (DDR3)
- Port 3 pull-up register (PUL3)
- A/D input disable register (lower) (AIDRL)

15.4.2 Block diagrams of port 3

- P30/AN00/CMP0_N pin
 - This pin has the following peripheral functions:
 - 8/10-bit A/D converter analog input pin (AN00)
 - Comparator ch. 0 inverting analog input (negative input) pin (CMP0_N)
- P31/AN01/CMP0_P pin

This pin has the following peripheral functions:

- 8/10-bit A/D converter analog input pin (AN01)
- Comparator ch. 0 non-inverting analog input (positive input) pin (CMP0_P)
- P33/AN03/CMP1_N pin
 - This pin has the following peripheral functions:
 - 8/10-bit A/D converter analog input pin (AN03)
 - Comparator ch. 1 inverting analog input (negative input) pin (CMP1_N)
- P34/AN04/CMP1_P pin
 - This pin has the following peripheral functions:
 - 8/10-bit A/D converter analog input pin (AN04)
 - Comparator ch. 1 non-inverting analog input (positive input) pin (CMP1_P)

• Block diagram of P30/AN00/CMP0_N, P31/AN01/CMP0_P, P33/AN03/CMP1_N and P34/AN04/CMP1_P

P32/AN02/CMP0_O pin

This pin has the following peripheral functions:

- 8/10-bit A/D converter analog input pin (AN02)
- Comparator ch. 0 digital output pin (CMP0_O)
- P35/AN05/CMP1_O pin
 - This pin has the following peripheral functions:
 - 8/10-bit A/D converter analog input pin (AN05)
 - Comparator ch. 1 digital output pin (CMP1_O)
- Block diagram of P32/AN02/CMP0_O and P35/AN05/CMP1_O

- P36/AN06 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN06)
- P37/AN07 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN07)
- Block diagram of P36/AN06 and P37/AN07

*15.4.3 Port 3 registers*Port 3 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write				
PDR3	0	Pin state is "L" level.	PDR3 value is "0".	As output port, outputs "L" level.				
F DIX3	1	Pin state is "H" level.	PDR3 value is "1".	As output port, outputs "H" level.				
DDR3	0		Port input enabled					
DDR3	1	Port output enabled						
PUL3	0		Pull-up disabled					
FULS	1	Pull-up enabled						
AIDRL	0		Analog input enabled					
AIDRE	1	Port input enabled						

Correspondence between registers and pins for port 3

		Correspondence between related register bits and pins							
Pin name	P37	P36	P35	P34	P33	P32	P31	P30	
PDR3									
DDR3	bit7	h:17 h:10	h:45	bit4	bit3	bit2	bit1	hit0	
PUL3	DILT	bit6	bit5	DIL4	DILO	DILZ	DILI	bit0	
AIDRL									

15.4.4 Port 3 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR3 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR3 register to external pins.
 - If data is written to the PDR3 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR3 register returns the PDR3 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR3 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (lower) (AIDRL) to "1".
 - If data is written to the PDR3 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR3 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is
 used to read the PDR3 register, the PDR3 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR3 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR3 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR3 register, the PDR3 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR3 register corresponding to the input pin of a peripheral function to "0".
 - When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRL register corresponding to that pin to "1".
 - Reading the PDR3 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR3 register, the PDR3 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR3 register are initialized to "0" and port input is enabled. As for a pin shared with the analog input function, its port input is disabled because the AIDRL register is initialized to "0".

- · Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR3 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an analog input pin
 - Set the bit in the DDR3 register bit corresponding to the analog input pin to "0" and the bit corresponding to that pin in the AIDRL register to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the corresponding bit in the PUL3 register to "0".

• Operation of the pull-up register

Setting the bit in the PUL3 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL3 register.

- Operation as a comparator input pin (only for P31 and P34)
 - Set the bit in the AIDRL register corresponding to the comparator input pin to "0".
 - Regardless of the value of the PDR3 register and that of the DDR3 register, if the comparator analog input enable bit in the comparator control register ch. 0/ch. 1 (CMR0/CMR1:VCID) is set to "0", the comparator input function is enabled.
 - To disable the comparator input function, set the VCID bit to "1".
 - For details of the comparator, refer to "CHAPTER 28 COMPARATOR" in "New 8FX MB95810K Series Hardware Manual".
- Operation as a comparator input pin (only for P30 and P33)
 - Set the bit in the AIDRL register corresponding to the comparator input pin to "0".
 - Regardless of the value of the PDR3 register and that of the DDR3 register, if the comparator analog input enable bit (VCID) and the negative analog input voltage source select bit (BGRS) in the comparator control register ch. 0/ch. 1 (CMR0/CMR1) are both set to "0", the comparator input function is enabled.
 - To disable the comparator input function, set the VCID bit or the BGRS bit to "1".
 - For details of the comparator, refer to "CHAPTER 28 COMPARATOR" in "New 8FX MB95810K Series Hardware Manual".

15.5 Port 4

Port 4 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.5.1 Port 4 configuration

- Port 4 is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port 4 data register (PDR4)
- Port 4 direction register (DDR4)
- Port 4 pull-up register (PUL4)
- A/D input disable register (upper) (AIDRH)

15.5.2 Block diagrams of port 4

- P40/AN08 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN08)
- P41/AN09 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN09)
- P42/AN10 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN10)
- P43/AN11 pin
 - This pin has the following peripheral function:
 - 8/10-bit A/D converter analog input pin (AN11)

• Block diagram of P40/AN08, P41/AN09, P42/AN10 and P43/AN11

15.5.3 Port 4 registersPort 4 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDR4	0	Pin state is "L" level.	PDR4 value is "0".	As output port, outputs "L" level.					
FDR4	1	Pin state is "H" level.	PDR4 value is "1".	As output port, outputs "H" level.					
DDR4	0		Port input enabled						
DDR4	1	Port output enabled							
PUL4	0		Pull-up disabled						
PUL4	1	Pull-up enabled							
AIDRH	0		Analog input enabled						
AIDRIT	1		Port input enabled						

• Correspondence between registers and pins for port 4

		Correspondence between related register bits and pins							
Pin name	-	-	-	-	P43	P42	P41	P40	
PDR4									
DDR4					bit3	bit2	bit1	bit0	
PUL4	-	-	-	-	DILO	DILZ	DILI	DILU	
AIDRH									

15.5.4 Port 4 operations

Operation as an output port

- A pin becomes an output port if the bit in the DDR4 register corresponding to that pin is set to "1".
- For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- When a pin is used as an output port, it outputs the value of the PDR4 register to external pins.
- If data is written to the PDR4 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- Reading the PDR4 register returns the PDR4 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR4 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When using a pin shared with the analog input function as an input port, set the corresponding bit in the A/D input disable register (upper) (AIDRH) to "1".
 - If data is written to the PDR4 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR4 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR4 register corresponding to the input pin of a peripheral function to "0".
 - When using a pin shared with the analog input function as another peripheral function input pin, configure it as an input port by setting the bit in the AIDRH register corresponding to that pin to "1".
 - Reading the PDR4 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR4 register, the PDR4 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR4 register are initialized to "0" and port input is enabled. As for a pin shared with the analog input function, its port input is disabled because the AIDRH register is initialized to "0".

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR4 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an analog input pin
 - Set the bit in the DDR4 register bit corresponding to the analog input pin to "0" and the bit corresponding to that pin

in the AIDRH register to "0".

- For a pin shared with other peripheral functions, disable the output of such peripheral functions. In addition, set the corresponding bit in the PUL4 register to "0".
- Operation of the pull-up register

Setting the bit in the PUL4 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL4 register.

15.6 Port 5

Port 5 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.6.1 Port 5 configuration

- Port 5 is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port 5 data register (PDR5)
- Port 5 direction register (DDR5)
- Port 5 pull-up register (PUL5)

15.6.2 Block diagrams of port 5

P50/SCL pin

- This pin has the following peripheral function:
- I²C bus interface ch. 0 clock I/O pin (SCL)
- P51/SDA pin
 - This pin has the following peripheral function:
 - I²C bus interface ch. 0 data I/O pin (SDA)

Block diagram of P50/SCL and P51/SDA

- P52/PPG1 pin
 - This pin has the following peripheral function:
 - 16-bit PPG timer ch. 1 output pin (PPG1)

Block diagram of P52/PPG1

• P53/TRG1 pin

This pin has the following peripheral function:

• 16-bit PPG timer ch. 1 trigger input pin (TRG1)

Block diagram of P53/TRG1

15.6.3 Port 5 registers

Port 5 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write				
PDR5	0	Pin state is "L" level.	PDR5 value is "0".	As output port, outputs "L" level.				
FDRS	1	Pin state is "H" level.	PDR5 value is "1".	As output port, outputs "H" level.*				
DDR5	0		Port input enabled					
DDRS	1	Port output enabled						
PUL5	0	Pull-up disabled						
F OLS	1		Pull-up enabled					

*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

• Correspondence between registers and pins for port 5

		Correspondence between related register bits and pins							
Pin name	-	-	-	-	P53	P52	P51	P50	
PDR5									
DDR5	-	-	-	-	bit3	bit2	bit1*	bit0*	
PUL5									

*: Though P50 and P51 have no pull-up function, bit0 and bit1 in the PUL5 register can still be accessed. The operation of P50 and P51 is not affected by the settings of bit0 and bit1 in the PUL5 register.

15.6.4 Port 5 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR5 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR5 register to external pins.
 - If data is written to the PDR5 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR5 register returns the PDR5 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR5 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR5 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR5 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR5 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR5 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR5 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR5 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.

Operation at reset If the CPU is reset, all bits in the DDR5 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR5 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

· Operation of the pull-up register

Setting the bit in the PUL5 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL5 register.

15.7 Port 6

Port 6 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.7.1 Port 6 configuration

- Port 6 is made up of the following elements.
- · General-purpose I/O pins/peripheral function I/O pins
- Port 6 data register (PDR6)
- Port 6 direction register (DDR6)
- Port 6 pull-up register (PUL6)

15.7.2 Block diagrams of port 6

- P60/PPG10 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 1 output pin (PPG10)
- P61/PPG11 pin
 - This pin has the following peripheral function:
 - 8/16-bit PPG ch. 1 output pin (PPG11)
- P62/TO10 pin
 - This pin has the following peripheral function:
 - 8/16-bit composite timer ch. 1 output pin (TO10)
- P63/TO11 pin
 - This pin has the following peripheral function:
 - 8/16-bit composite timer ch. 1 output pin (TO11)
- P66/SOT pin
 - This pin has the following peripheral function:
 - LIN-UART data output pin (SOT)

• P64/EC1 pin

This pin has the following peripheral function:

• 8/16-bit composite timer ch. 1 clock input pin (EC1)

• P65/SCK pin

- This pin has the following peripheral function:
- LIN-UART clock I/O pin (SCK)

Block diagram of P65/SCK

• P67/SIN pin

- This pin has the following peripheral function:
- LIN-UART data input pin (SIN)

Block diagram of P67/SIN

15.7.3 Port 6 registers

Port 6 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR6	0	Pin state is "L" level.	PDR6 value is "0".	As output port, outputs "L" level.			
FDRO	1	Pin state is "H" level.	PDR6 value is "1".	As output port, outputs "H" level.			
DDR6	0		Port input enabled	1			
DDRO	1	Port output enabled					
PUL6	0		Pull-up disabled				
P OLO	1		Pull-up enabled				

Correspondence between registers and pins for port 6

		Correspondence between related register bits and pins								
Pin name	P67	P66	P65	P64	P63	P62	P61	P60		
PDR6										
DDR6	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
PUL6										

15.7.4 Port 6 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR6 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR6 register to external pins.
 - If data is written to the PDR6 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR6 register returns the PDR6 register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDR6 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR6 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR6 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR6 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR6 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR6 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR6 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR6 register, the PDR6 register value is returned.

Operation at reset If the CPU is reset, all bits in the DDR6 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR6 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P65/SCK and P67/SIN is enabled by the external interrupt control register ch. 0 (EIC00)
 of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PUL6 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL6 register.

15.8 Port 7

Port 7 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.8.1 Port 7 configuration

- Port 7 is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port 7 data register (PDR7)
- Port 7 direction register (DDR7)
- Port 7 pull-up register (PUL7)

15.8.2 Block diagrams of port 7

- P70/TO0 pin
 - This pin has the following peripheral function:
 - 16-bit reload timer ch. 0 output pin (TO0)

• Block diagram of P70/TO0

- P71/TI0 pin
 - This pin has the following peripheral function:
 - 16-bit reload timer ch. 0 input pin (TI0)
- Block diagram of P71/TI0

- P72 pin
- Block diagram of P72

15.8.3 Port 7 registers

Port 7 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR7	0	Pin state is "L" level.	PDR7 value is "0".	As output port, outputs "L" level.			
	1	Pin state is "H" level.	PDR7 value is "1".	As output port, outputs "H" level.			
	0	Port input enabled					
DDR7 1		Port output enabled					
PUL7	0	Pull-up disabled					
FUL/	1		Pull-up enabled				

Correspondence between registers and pins for port 7

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	-	P72	P71	P70		
PDR7										
DDR7	-	-	-	-	-	bit2	bit1	bit0		
PUL7										

15.8.4 Port 7 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR7 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR7 register to external pins.
 - If data is written to the PDR7 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR7 register returns the PDR7 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR7 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR7 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR7 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned.
- Operation as a peripheral function output pin
 - A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - The pin value can be read from the PDR7 register even if the peripheral function output is enabled. Therefore, the
 output value of a peripheral function can be read by the read operation on the PDR7 register. However, if the readmodify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR7 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR7 register returns the pin value, regardless of whether the peripheral function uses that pin as its

input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR7 register, the PDR7 register value is returned.

· Operation at reset

If the CPU is reset, all bits in the DDR7 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR7 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PUL7 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL7 register.

15.9 Port 8

Port 8 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.9.1 Port 8 configuration

Port 8 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 8 data register (PDR8)
- Port 8 direction register (DDR8)
- Port 8 pull-up register (PUL8)

15.9.2 Block diagrams of port 8

- P80 pin
- P81 pin
- P82 pin

· Block diagram of P80, P81 and P82

P83/TRG0/ADTG* pin

This pin has the following peripheral function:

- 16-bit PPG timer ch. 0 trigger input pin (TRG0)
- 8/10-bit A/D converter trigger input pin (ADTG)
- *: TRG0 and ADTG can be mapped to either P13 or P83 by using the SYSC register.

15.9.3 Port 8 registers

Port 8 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR8	0	Pin state is "L" level.	PDR8 value is "0".	As output port, outputs "L" level.			
PDRo	1	Pin state is "H" level.	PDR8 value is "1".	As output port, outputs "H" level.			
DDR8	0		Port input enabled				
DDRO	1		Port output enable	d			
PUL8	0	Pull-up disabled					
FOLO	1		Pull-up enabled				

· Correspondence between registers and pins for port 8

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	P83	P82	P81	P80		
PDR8										
DDR8	-	-	-	-	bit3	bit2	bit1	bit0		
PUL8										

15.9.4 Port 8 operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDR8 register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDR8 register to external pins.
 - If data is written to the PDR8 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDR8 register returns the PDR8 register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDR8 register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDR8 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDR8 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR8 register, the PDR8 register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDR8 register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDR8 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR8 register, the PDR8 register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDR8 register are initialized to "0" and port input is enabled.

• Operation in stop mode and watch mode

- If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR8 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P83/TRG0/ADTG is enabled by the external interrupt control register ch. 0 (EIC00) of
 the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked.
- If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PUL8 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL8 register.

15.10 Port E

Port E is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.10.1 Port E configuration

Port E is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port E data register (PDRE)
- Port E direction register (DDRE)
- Port E pull-up register (PULE)

15.10.2 Block diagrams of port E

PE0/INT10 pin

This pin has the following peripheral function:

- External interrupt input pin (INT10)
- PE1/INT11 pin

This pin has the following peripheral function:

- External interrupt input pin (INT11)
- PE2/INT12 pin

This pin has the following peripheral function: External interrupt input pin (INT12)

• PE3/INT13 pin

This pin has the following peripheral function:

• External interrupt input pin (INT13)

• Block diagram of PE0/INT10, PE1/INT11, PE2/INT12 and PE3/INT13

15.10.3 Port E registersPort E register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDRE	0	Pin state is "L" level.	PDRE value is "0".	As output port, outputs "L" level.			
FURE	1	Pin state is "H" level.	PDRE value is "1".	As output port, outputs "H" level.			
DDRE	0		Port input enabled				
DDRE	1		Port output enabled				
PULE	0	Pull-up disabled					
FULE	1		Pull-up enabled				

· Correspondence between registers and pins for port E

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	PE3	PE2	PE1	PE0		
PDRE										
DDRE	-	-	-	-	bit3	bit2	bit1	bit0		
PULE										

15.10.4 Port E operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDRE register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRE register to external pins.
 - If data is written to the PDRE register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - · Reading the PDRE register returns the PDRE register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDRE register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRE register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRE register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRE register, the PDRE register value is returned.
- Operation as a peripheral function input pin
 - To set a pin as an input port, set the bit in the DDRE register corresponding to the input pin of a peripheral function to "0".
 - Reading the PDRE register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDRE register, the PDRE register value is returned.
- Operation at reset

If the CPU is reset, all bits in the DDRE register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop
 mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRE register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT10 to INT13), the input is enabled and not
 blocked.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an external interrupt input pin
 - Set the bit in the DDRE register corresponding to the external interrupt input pin to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin.
- Operation of the pull-up register

Setting the bit in the PULE register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PULE register.

15.11 Port F

Port F is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.11.1 Port F configuration

- Port F is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port F data register (PDRF)
- Port F direction register (DDRF)

15.11.2 Block diagrams of port F

• PF0/X0 pin

This pin has the following peripheral function:

- Main clock input oscillation pin (X0)
- PF1/X1 pin

This pin has the following peripheral function:

- Main clock I/O oscillation pin (X1)
- Block diagram of PF0/X0 and PF1/X1

PF2/RST pin

This pin has the following peripheral function:

Reset pin (RST)

Block diagram of PF2/RST

15.11.3 Port F registersPort F register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDRF	0	Pin state is "L" level.	PDRF value is "0".	As output port, outputs "L" level.		
FURF	1	Pin state is "H" level.	PDRF value is "1".	As output port, outputs "H" level.*		
DDRF	0	Port input enabled				
DURF	1		Port output enable	d		

*: If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

Correspondence between registers and pins for port F

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	-	PF2	PF1	PF0		
PDRF						bit2*	bit1	bit0		
DDRF	-	-	-	-	-	DILZ	DILI	DILU		

*: When the external reset is selected (SYSC:RSTEN = 1), the port function cannot be used.

15.11.4 Port F operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRF register to external pins.
 - If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDRF register returns the PDRF register value.
- · Operation as an input port
 - A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned.
- · Operation at reset

If the CPU is reset, all bits in the DDRF register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

15.12 Port G

Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95810K Series Hardware Manual".

15.12.1 Port G configuration

- Port G is made up of the following elements.
- General-purpose I/O pins/peripheral function I/O pins
- Port G data register (PDRG)
- Port G direction register (DDRG)
- Port G pull-up register (PULG)

15.12.2 Block diagram of port G

- PG1/X0A pin
 - This pin has the following peripheral function:
 - Subclock input oscillation pin (X0A)
- PG2/X1A pin
 - This pin has the following peripheral function:
 - Subclock I/O oscillation pin (X1A)
- · Block diagram of PG1/X0A and PG2/X1A

15.12.3 Port G registers

Port G register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write							
PDRG	0	Pin state is "L" level.	PDRG value is "0".	As output port, outputs "L" level.							
FDKG	1	Pin state is "H" level.	PDRG value is "1".	As output port, outputs "H" level.							
DDRG	0		Port input enabled	ł							
DDKG	1		Port output enable	d							
PULG	0		Pull-up disabled								
FOLG	1		Pull-up enabled								

· Correspondence between registers and pins for port G

		Correspondence between related register bits and pins									
Pin name	-	-	-	-	-	PG2	PG1	-			
PDRG											
DDRG	-	-	-	-	-	bit2	bit1	-			
PULG											

15.12.4 Port G operations

- Operation as an output port
 - A pin becomes an output port if the bit in the DDRG register corresponding to that pin is set to "1".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - When a pin is used as an output port, it outputs the value of the PDRG register to external pins.
 - If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - Reading the PDRG register returns the PDRG register value.
- Operation as an input port
 - A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to "0".
 - For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an input port.
 - Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.

Operation at reset

If the CPU is reset, all bits in the DDRG register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation of the pull-up register

Setting the bit in the PULG register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PULG register.

16. Interrupt Source Table

	Interrupt		r table ress		pt level register	Priority order of interrupt sources
Interrupt source	request number	Upper	Lower	Register	Bit	of the same level (occurring simultaneously)
External interrupt ch. 0	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High
External interrupt ch. 4			UNITID	ILINU	200[1.0]	▲
External interrupt ch. 1	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]	T
External interrupt ch. 5		UXFFFO	UXEFE9	ILKU		
External interrupt ch. 2	IRQ02	0xFFF6	0xFFF7	ILR0	L02 [1:0]	
External interrupt ch. 6		UXFFFO	UXFFF/	ILRU	LU2 [1.0]	
External interrupt ch. 3						
External interrupt ch. 7	IRQ03	0xFFF4	0xFFF5	ILR0	L03 [1:0]	
Comparator ch. 1						
UART/SIO ch. 0	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]	
8/16-bit composite timer ch. 0		0			1.05 [4:0]	
(lower)	IRQ05	0xFFF0	0xFFF1	ILR1	L05 [1:0]	
8/16-bit composite timer ch. 0	10000	0EEEE	0EEEE		1.00 [4:0]	
(upper)	IRQ06	0xFFEE	0xFFEF	ILR1	L06 [1:0]	
LIN-UART (reception)	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]	
LIN-UART (transmission)	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]	
8/16-bit PPG ch. 1 (lower)	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]	
8/16-bit PPG ch. 1 (upper)	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]	
16-bit reload timer ch. 0	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]	
8/16-bit PPG ch. 0 (upper)	IRQ12	0xFFE2		ILR3	L12 [1:0]	
8/16-bit PPG ch. 0 (lower)	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]	
8/16-bit composite timer ch. 1						
(upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]	
16-bit PPG timer ch. 0	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]	
I ² C bus interface ch. 0	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]	
16-bit PPG timer ch. 1	IRQ17	0xFFD8		ILR4	L17 [1:0]	
8/10-bit A/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]	
Time-base timer	IRQ19	0xFFD4	0xFFD5	ILR4	L19 [1:0]	
Watch prescaler						
Watch counter	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]	
External interrupt ch. 10					1	
External interrupt ch. 11	1					
External interrupt ch. 12	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]	
External interrupt ch. 13						
Comparator ch. 0	1					
8/16-bit composite timer ch. 1		0	0		1 00 14 01	
(lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]	
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	▼
,						Low

17. Pin States In Each Mode

Pin name	Normal	Sleen mede	Stop	mode	Watch	mode	On react
Pin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	On reset
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	—
PF0/X0	I/O port*1	I/O port*1	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked*1*2	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked*1*2	 Hi-Z Input enabled*³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	—
PF1/X1	I/O port*1	I/O port*1	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked* ^{1*2}	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked* ^{1*2}	 Hi-Z Input enabled*³ (However, it does not function.)
	Reset input*4	Reset input*4	Reset input	Reset input	Reset input	Reset input	Reset input*4
PF2/RST	I/O port	I/O port	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked*1*2	 Previous state kept Input blocked*1*2 	- Hi-Z - Input blocked*1*2	 Hi-Z Input enabled*³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	
PG1/X0A	I/O port*1	I/O port*1	 Previous state kept Input blocked*1*2 	- Hi-Z* ⁵ - Input blocked*1*2	 Previous state kept Input blocked*1*2 	- Hi-Z* ⁵ - Input blocked*1*2	 Hi-Z Input enabled*³ (However, it does not function.)
-	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PG2/X1A	I/O port*1	I/O port*1	 Previous state kept Input blocked*1*2 	- Hi-Z* ⁵ - Input blocked* ^{1*2}	 Previous state kept Input blocked*1*2 	- Hi-Z* ⁵ - Input blocked* ^{1*2}	 Hi-Z Input enabled*³ (However, it does not function.)
	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*2*6 	- Hi-Z* ⁵ - Input blocked* ^{2*6}	 Previous state kept Input blocked*2*6 	- Hi-Z* ⁵ - Input blocked* ^{2*6}	 Hi-Z Input enabled*³ (However, it does not function.)
	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*2 	- Hi-Z*5 - Input blocked*2	 Previous state kept Input blocked*2 	- Hi-Z*5 - Input blocked*2	 Hi-Z Input enabled*³ (However, it does not function.)

Pin name	Normal	Sleep mode	Stop	mode	Watch	mode	On reset
Fin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	On reset
P12/DBG	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*2 	- Hi-Z - Input blocked* ²	 Previous state kept Input blocked*2 	- Hi-Z - Input blocked* ²	 Hi-Z Input enabled*³ (However, it does not function.)
P13/UCK0/ TRG0/ADTG	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*^{2, *6} 	- Hi-Z* ⁵ - Input blocked* ^{2, *6}	 Previous state kept Input blocked*^{2, *6} 	- Hi-Z* ⁵ - Input blocked* ^{2, *6}	 Hi-Z Input enabled*³ (However, it does not function.)
P14/PPG0 P20/PPG00 P21/PPG01 P22/TO00 P23/TO01	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*² 	- Hi-Z* ⁵ - Input blocked* ²	 Previous state kept Input blocked*2 	- Hi-Z* ⁵ - Input blocked* ²	 Hi-Z Input enabled*³ (However, it does not function.)
P24/EC0	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*^{2,*6} 	- Hi-Z* ⁵ - Input blocked* ^{2, *6}	 Previous state kept Input blocked*^{2, *6} 	- Hi-Z* ⁵ - Input blocked* ^{2, *6}	 Hi-Z Input enabled*³ (However, it does not function.)
P32/AN02/ CMP0_0 P35/AN05/ CMP1_0	I/O port/ peripheral function I/O/ analog input	I/O port/ peripheral function I/O/ analog input	 Previous state kept*⁸ Input blocked*² 	- Hi-Z*5 - Input blocked*2	 Previous state kept*⁸ Input blocked*² 	- Hi-Z ^{*5} - Input blocked ^{*2}	- Hi-Z - Input blocked* ²
P30/AN00/ CMP0_N P31/AN01/ CMP0_P P33/AN03/ CMP1_N P34/AN04/ CMP1_P	I/O port/ peripheral function I/O/ analog input	I/O port/ peripheral function I/O/ analog input	 Previous state kept Input blocked*^{2,*7} 	- Hi-Z* ⁵ - Input blocked* ^{2, *7}	 Previous state kept Input blocked*^{2,*7} 	- Hi-Z* ⁵ - Input blocked* ^{2, *7}	- Hi-Z - Input blocked* ²
P36/AN06 P37/AN07 P40/AN08 P41/AN09 P42/AN10 P43/AN11	I/O port/ analog input	I/O port/ analog input	 Previous state kept Input blocked*2 	- Hi-Z* ⁵ - Input blocked* ²	 Previous state kept Input blocked*2 	- Hi-Z* ⁵ - Input blocked* ²	- Hi-Z - Input blocked*2
P50/SCL P51/SDA	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*^{2, *9} 	- Hi-Z - Input blocked* ^{2, *9}	 Previous state kept Input blocked*^{2,*9} 	- Hi-Z - Input blocked* ^{2, *9}	 Hi-Z Input enabled*³ (However, it does not function.)

Pin name	Normal	Sleep mode	Stop	mode	Watch	mode	On reset
Pin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	On reset
P52/PPG1 P53/TRG1 P60/PPG10 P61/PPG11 P62/TO10 P63/TO11 P64/EC1 P66/SOT	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*2 	- Hi-Z* ⁵ - Input blocked* ²	 Previous state kept Input blocked*2 	- Hi-Z* ⁵ - Input blocked* ²	 Hi-Z Input enabled*³ (However, it does not function.)
	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*^{2, *6} 	- Hi-Z* ⁵ - Input blocked* ^{2, *6}	 Previous state kept Input blocked*2, *6 	- Hi-Z* ⁵ - Input blocked*2, *6	 Hi-Z Input enabled*³ (However, it does not function.)
P70/TO0	I/O port/ peripheral	I/O port/ peripheral	- Previous state kept	- Hi-Z*5	- Previous state	- Hi-Z*5	- Hi-Z - Input enabled* ³
P71/TI0	function I/O	function I/O	- Input blocked*2	 Input blocked*2 	- Input blocked*2	 Input blocked^{*2} 	(However, it does not function.)
P72							- Hi-Z
P80			- Previous state	- Hi-Z*5	- Previous state	- Hi-Z*⁵	 Input enabled^{*3}
P81	I/O port	I/O port	kept - Input blocked*2	 Input blocked*2 	kept - Input blocked*2	 Input blocked*2 	(However, it does not
P82	•						function.)
P83/TRG0/ ADTG							
PE0/INT10			- Previous state		- Previous state		- Hi-Z - Input
PE1/INT11	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	kept - Input	 Hi-Z*⁵ Input blocked*^{2, *6} 	kept - Input	 Hi-Z^{*5} Input blocked^{*2, *6} 	enabled* ³ (However, it
PE2/INT12		blocked*2, *6			blocked*2, *6		does not function.)
PE3/INT13							

SPL: Pin state setting bit in the standby control register (STBC:SPL)

Hi-Z: High impedance

- *1: The pin stays at the state shown when configured as a general-purpose I/O port.
- *2: "Input blocked" means direct input gate operation from the pin is disabled.
- *3: "Input enabled" means that the input function is enabled. While the input function is enabled, a pull-up or pull-down operation has to be performed in order to prevent leaks due to external input. If a pin is used as an output port, its pin state is the same as that of other ports.
- *4: The PF2/RST pin stays at the state shown when configured as a reset pin.
- *5: The pull-up control setting is still effective.
- *6: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled.
- *7: Though input is blocked, an analog signal can also be input to generate a comparator interrupt when the comparator interrupt is enabled.
- *8: The output function of the comparator is still in operation in stop mode and watch mode.
- *9: The I²C bus interface can wake up the MCU in stop mode or watch mode when its MCU standby mode wakeup function is enabled. For details of the MCU standby mode wakeup function, refer to "CHAPTER 24 I²C BUS INTERFACE" in "New 8FX MB95810K Series Hardware Manual".

18. Electrical Characteristics

18.1 Absolute Maximum Ratings

Parameter	Symbol	Rat		Unit	Remarks
Farameter	•	Min	Max	Unit	Relliaiks
Power supply voltage*1	AVcc, Vcc	Vss - 0.3	Vss + 6	V	*2
	AVR	Vss - 0.3	Vss + 6	V	
Input voltage*1	Vi	Vss - 0.3	Vss + 6	V	*3
Output voltage*1	Vo	Vss - 0.3		V	*3
Maximum clamp current	CLAMP	-2	+2	mA	Applicable to specific pins*4
Total maximum clamp current	$\Sigma Iclamp $	_	20	mA	Applicable to specific pins*4
"L" level maximum output current	lo∟	—	15	mA	
"L" level average current	Iolav1		4	mA	Other than P00 to P07 Average output current = operating current × operating ratio (1 pin)
	Iolav2		12	11/2 (P00 to P07 Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	Σ Iol	_	100	mA	
"L" level total average output current	Σ Iolav	_	37	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output current	Іон	—	-15	mA	
"H" level average	Iohav1		-4	mA	Other than P00 to P07 Average output current = operating current × operating ratio (1 pin)
current	Іонаv2		-8		P00 to P07 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current	ΣІонаν	_	-47	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	Pd	—	320	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: These parameters are based on the condition that Vss is 0.0 V.

*2: Apply equal potential to AVcc and Vcc. AVR must not exceed AVcc.

*3: V₁ and V₀ must not exceed V_{CC} + 0.3 V. V₁ must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V₁ rating.

*4: Specific pins: P00 to P07, P10, P11, P13, P14, P20 to P24, P30 to P37, P40 to P43, P52, P53, P60 to P67, P70 to P72, P80 to P83, PE0 to PE3, PF0, PF1, PG1, PG2

• Use under recommended operating conditions.

• Use with DC voltage (current).

- The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
- The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
- When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
- If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
- If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
- Do not leave the HV (High Voltage) input pin unconnected.
- · Example of a recommended circuit:

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

18.2 Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Va	lue	Unit	Remarks	
Falameter	Symbol	Min	Max	Unit	Kemarks	
Power supply voltage	AVcc, Vcc	2.88	5.5	V		
A/D converter reference input voltage	AVR	AVcc - 0.1	AVcc	V		
Decoupling capacitor	Cs	0.022	1	μF	*	
Operating temperature	TA	-40	+85	°C	Other than on-chip debug mode	
Operating temperature	IA	+5	+35		On-chip debug mode	

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the Vcc pin must have a capacitance equal to or larger than the capacitance of Cs. For the connection to a decoupling capacitor Cs, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and Cs and the distance between Cs and the Vss pin when designing the layout of a printed circuit board.

- DBG pin does not stay at "L" level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.
- WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

18.3 DC Characteristics

				(100 0	Value			, I _A = –40 °C to +85
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
<i>"</i>	Vіні	P10, P50, P51, P67		0.7 Vcc	_	Vcc + 0.3	V	CMOS input level
"H" level input voltage	Vins	Other than P10, P50, P51, P67, PF2	_	0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	Vінм	PF2		0.8 Vcc	_	Vcc + 0.3	V	Hysteresis input
	Vili	P10, P50, P51, P67	_	Vss – 0.3		0.3 Vcc	V	CMOS input level
"L" level input voltage	VILS	Other than P10, P50, P51, P67, PF2	_	Vss – 0.3	_	0.2 Vcc	V	Hysteresis input
	VILM	PF2		Vss-0.3	_	0.2 Vcc	V	Hysteresis input
Open-drain output application voltage	VD	P12, P50, P51, PF2	_	Vss – 0.3		Vss + 5.5	V	
"H" level output voltage	Voh1	Output pins other than P00 to P07, P12, PF2	Іон = –4 mA	Vcc - 0.5		_	V	
-	Vон2	P00 to P07	Iон = –8 mA	Vcc-0.5	—	—	V	
"L" level output voltage	Vol1	Output pins other than P00 to P07	lo∟ = 4 mA	_	_	0.4	V	
vollage	Vol2	P00 to P07	lo∟ = 12 mA	—	_	0.4	V	
Input leak current (Hi-Z output leak current)	lu	All input pins	0.0 V < VI < Vcc	-5	_	+5	μA	When the internal pull-up resistor is disabled
Internal pull-up resistor	Rpull	Other than P12, P50, P51, PF0 to PF2	V1 = 0 V	25	50	100	kΩ	When the internal pull-up resistor is enabled
Input capacitance	Cin	Other than AVcc, AVss, AVR, Vcc and Vss	f = 1 MHz	_	5	15	pF	

D					Value			_
Parameter	Symbol	Pin name	Condition	Min	Typ*1	Max* ²	Unit	Remarks
	lcc		Fсн = 32 MHz FмP = 16 MHz	_	4.8	5.8	mA	Except during Flash memory programming and erasing
			Main clock mode (divided by 2)	_	10.1	13.8	mA	During Flash memory programming and erasing
	lccs	Vcc	F _{CH} = 32 MHz F _{MP} = 16 MHz Main sleep mode (divided by 2)	_	1.9	3	mA	
	IccL	ICCL (External clock operation)	F_{CL} = 32 kHz F_{MPL} = 16 kHz Subclock mode (divided by 2) T_A = +25 °C		65.9	145	μA	
Power	Iccls		F_{CL} = 32 kHz F_{MPL} = 16 kHz Subsleep mode (divided by 2) T_A = +25 °C		11.2	16	μA	In deep standby mode
supply current ^{*3}	Ісст		F_{CL} = 32 kHz Watch mode Main stop mode T_A = +25 °C		8.6	13	μA	In deep standby mode
	ICCMPLL		$F_{MCRPLL} = 16 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main CR PLL clock mode (multiplied by 4) $T_A = +25 \text{ °C}$	_	5.1	6.8	mA	
	ICCMCR	Vcc	F _{CRH} = 4 MHz F _{MP} = 4 MHz Main CR clock mode	_	1.4	4.6	mA	
	Iccscr	ICCSCR	Sub-CR clock mode (divided by 2) $T_A = +25 \ ^{\circ}C$	_	63.1	230	μA	
	Ісстѕ	Vcc (External clock operation)	FcH = 32 MHz Time-base timer mode T _A = +25 °C	_	360	455	μA	In deep standby mode
	Іссн		Substop mode T _A = +25 °C		8.8	13	μA	In deep standby mode

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Deveneter	Cumb al		Condition		Value		Unit	Domoriko
Parameter	Symbol	Pin name	Condition	Min	Typ*1	Max*2	Unit	Remarks
	١v		Current consumption of the comparator	—	60	160	μA	
	Ilvd	Vcc	Current consumption of the low-voltage detection reset circuit	_	4	7	μA	With the LVD reset already enabled by the LVD reset circuit control register (LVDCC)
	Ісгн		Current consumption of the main CR oscillator		240	320	μA	
Power	ICRL		Current consumption of the sub-CR oscillator oscillating at 100 kHz		7	20	μA	
supply current* ³	Instby		Current consumption difference between normal standby mode and deep standby mode T _A = +25 °C	_	22	30	μA	
	IA		Vcc = 5.5 V FcH = 16 MHz Current consumption of the A/D converter	_	2	3.1	mA	
	Іан	AVcc	$F_{CRH} = 4 \text{ MHz}$ $F_{MP} = 4 \text{ MHz}$ Current consumption with the A/D converter halted $T_A = +25 \text{ °C}$		1	5	μΑ	

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

*1: Vcc = 5.0 V, T_A = +25 °C

*2: Vcc = 5.5 V, T_A = +85 °C (unless otherwise specified)

- *3: The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (ILVD) to one of the values from Icc to IccH. In addition, when both the low-voltage detection reset circuit and a CR oscillator are selected, the power supply current is the sum of adding up the current consumption of the lowvoltage detection reset circuit (ILVD), the current consumption of the CR oscillators (ICRH or ICRL) and one of the values from Icc to IccH. In on-chip debug mode, the main CR oscillator (ICRH) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases accordingly.
 - See "4. AC Characteristics Clock Timing" for FCH, FCL, FCRH and FMCRPLL.
 - See "4. AC Characteristics Source Clock/Machine Clock" for FMP and FMPL.
 - The power supply current value in standby mode is measured in deep standby mode. The current consumption in normal standby mode is higher than that in deep standby mode. The power supply current value in normal standby mode can be found by adding the current consumption difference between normal standby mode and deep standby mode (INSTBY) to the power supply current value in deep standby mode. For details of normal standby mode and deep standby mode, refer to "CHAPTER 3 CLOCK CONTROLLER" in "New 8FX MB95810K Series Hardware Manual".

18.4 AC Characteristics

18.4.1 Clock Timing

(Vcc = 2.88 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Din nomo	Condition		Value		l lmit	Domorko
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	Fсн	X0, X1	—	1	—	16.25	MHz	When the main oscillation circuit is used
	ГСН	X0	X1: open	1		12	MHz	When the main external clock
		X0, X1	*	1	_	32.5	MHz	is used
				3.92	4	4.08	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ The main CR clock is used.}\\ \bullet \mbox{ 0 }^{\circ}\mbox{C} \leq T_A \leq +70 \ ^{\circ}\mbox{C} \end{array}$
	Ескн	_	_	3.8	4	4.2	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ The main CR clock is used.}\\ \bullet \mbox{ - 40 }^{\circ}\mbox{C} \leq T_A < 0 \;^{\circ}\mbox{C},\\ + \; 70 \;^{\circ}\mbox{C} < T_A \leq + \; 85 \;^{\circ}\mbox{C} \end{array}$
				7.84	8	8.16	MHz	Operating conditions • PLL multiplication rate: 2 • $0 \ ^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
				7.6	8	8.4	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \mbox{ PLL multiplication rate: 2}\\ \bullet \mbox{ - 40 } ^{\circ}\mbox{C} \leq T_{A} < 0 \ ^{\circ}\mbox{C}, \\ + \mbox{ 70 } ^{\circ}\mbox{C} < T_{A} \leq + \mbox{ 85 } \ ^{\circ}\mbox{C} \end{array}$
				9.8	10	10.2	MHz	Operating conditions • PLL multiplication rate: 2.5 • $0 \ ^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
Clock frequency	FMCRPLL	_		9.5	10	10.5	MHz	$\begin{array}{l} \hline \text{Operating conditions}\\ \bullet \ \text{PLL multiplication rate: 2.5}\\ \bullet \ -40\ ^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0\ ^{\circ}\text{C},\\ +70\ ^{\circ}\text{C} < \text{T}_{\text{A}} \leq +85\ ^{\circ}\text{C} \end{array}$
	T MCRPLL			11.76	12	12.24	MHz	Operating conditions • PLL multiplication rate: 3 • $0 \ ^{\circ}C \le T_A \le +70 \ ^{\circ}C$
				11.4	12	12.6	MHz	$\begin{array}{l} \mbox{Operating conditions} \\ \bullet \ \mbox{PLL multiplication rate: 3} \\ \bullet \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
				15.68	16	16.32	MHz	Operating conditions • PLL multiplication rate: 4 • $0 \ ^{\circ}C \le T_{A} \le +70 \ ^{\circ}C$
				15.2	16	16.8	MHz	$\begin{array}{l} \mbox{Operating conditions}\\ \bullet \ \mbox{PLL multiplication rate: 4}\\ \bullet \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Fc∟	X0A, X1A	_	_	32.768	_	kHz	When the suboscillation circuit is used
		ΛυΑ, ΛΙΑ		_	32.768	_	kHz	When the sub-external clock is used
	FCRL		_	50	100	150	kHz	When the sub-CR clock is used

Parameter	Symbol	Din namo	Condition		Value		Unit	Remarks
Falameter	Symbol		Condition	Min	Тур	Мах	Unit	Remarks
		X0, X1		61.5		1000	ne	When the main oscillation circuit is used
Clock cycle	t HCYL	X0	X1: open	83.4		1000	ns	When an external clock is
time		X0, X1	*	30.8		1000	ns	used
	t LCYL	X0A, X1A			30.5		μs	When the subclock is used
	tw∺1,	X0	X1: open	33.4			ns	
Input clock	t w∟1	X0, X1	*	12.4			ns	When an external clock is used, the duty ratio should
pulse width	twн2, tw∟2	X0A		_	15.2			range between 40% and 60%.
Input clock	tcr,	X0, X0A	X1: open	_		5	ns	When an external clock is
rising time and falling time	tCF	X0, X1, X0A, X1A	*	_	_	5		used
CR oscillation	t CRHWK	—	—	_	_	50	US	When the main CR clock is used
start time	t CRLWK	_	—	_	_	30	US	When the sub-CR clock is used
PLL oscillation start time	t MCRPLLWK	—	—		_	100	US	When the main CR PLL clock is used

(Vcc = 2.88 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

*: The external clock signal is input to X0 and the inverted external clock signal to X1.

18.4.2 Source Clock/Machine Clock

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin		Value		Unit	Remarks
i arameter	Symbol	name	Min	Тур	Max	Onit	Remarks
							When the main external clock is used
			61.5		2000	ns	Min: Fcн = 32.5 MHz, divided by 2
							Max: Fcн = 1 MHz, divided by 2
						ns	When the main CR clock is used
Source clock	tsclk	_	62.5		1000		Min: FCRH = 4 MHz, multiplied by 4
cycle time*1	LOOLIN						Max: FCRH = 4 MHz, divided by 4
				61		μs	When the suboscillation clock is used
				01		μο	FcL = 32.768 kHz, divided by 2
				20		μs	When the sub-CR clock is used
				20		-	FCRL = 100 kHz, divided by 2
	Esp		0.5		16.25		When the main oscillation clock is used
Source clock frequency	1.01		_	4	12.5	MHz	When the main CR clock is used
	_	—	_	16.384	_	kHz	When the suboscillation clock is used
nequency	FSPL			50		kHz	When the sub-CR clock is used
				50		KI IZ	FCRL = 100 kHz, divided by 2
			61.5	—			When the main oscillation clock is used
					32000	ns	Min: Fsp = 16.25 MHz, no division
							Max: Fsp = 0.5 MHz, divided by 16
Machine clock							When the main CR clock is used
cycle time*2			250		4000	ns	Min: Fsp = 4 MHz, no division
(minimum	t MCLK						Max: Fsp = 4 MHz, divided by 16
instruction	LINCLK						When the suboscillation clock is used
execution time)			61		976.5	μs	Min: Fspl = 16.384 kHz, no division
							Max: Fspl = 16.384 kHz, divided by 16
							When the sub-CR clock is used
			20		320	μs	Min: Fspl = 50 kHz, no division
							Max: Fspl = 50 kHz, divided by 16
	Fмр		0.031		16.25	MHz	
Machine clock			0.25		16	MHz	When the main CR clock is used
frequency		1 —	1.024		16.384	kHz	
nequency	FMPL		3 125		50 kH		When the sub-CR clock is used
			3.125 — 50		50	kHz	FCRL = 100 kHz

*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- PLL multiplication of main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Subclock divided by 2
- Sub-CR clock divided by 2

*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

18.4.3 External Reset

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Paramotor	Symbol	Value		Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
RST "L" level pulse width	t RSTL	2 t MCLK*		ns	

*: See "Source Clock/Machine Clock" for tMCLK.

18.4.4 Power-on Reset

(Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Condition	Va	lue	Unit	Remarks	
Falameter	Symbol	Condition	Min	Мах	Unit	Remarks	
Power supply rising time	tR			50	ms		
Power supply cutoff time	toff		1		ms	Wait time until power-on	

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.

18.4.5 Peripheral Input Timing

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Va	Unit	
Falameter	Symbol	Fill liallie	Min	Мах	Unit
Peripheral input "H" pulse width	tı∟ıн	INT00 to INT07, INT10 to INT13,	2 t мськ*		ns
Peripheral input "L" pulse width	tını∟	EC0, EC1, TI0, TRG0, TRG1	2 t мськ*		ns

*: See "Source Clock/Machine Clock" for tMCLK.

18.4.6 LIN-UART Timing

Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is disabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0)

	1	1	(Vcc = 5.0 V±10			to +8
Parameter	Symbol	Pin name	Condition	Va	Unit	
i arameter	Symbol	i in name	Condition	Min	Max	onic
Serial clock cycle time	tscyc	SCK		5 t MCLK* ³	—	ns
$SCK\!\!\downarrow ightarrow SOT$ delay time	tslovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN \rightarrow SCK [↑]	tı∨sнı	SCK, SIN	operation output pin: C∟ = 80 pF + 1 TTL	tмськ*3 + 80	—	ns
$SCK^{\uparrow} \to valid \ SIN \ hold \ time$	tshixi	SCK, SIN		0	—	ns
Serial clock "L" pulse width	tslsh	SCK		$3 t_{\text{MCLK}^{*3}-t_{\text{R}}}$	—	ns
Serial clock "H" pulse width	tshsl	SCK		tмськ*3 + 10	—	ns
$SCK\!\!\downarrow \to SOT$ delay time	t SLOVE	SCK, SOT	External clock	_	2 tмськ* ³ + 60	ns
Valid SIN \rightarrow SCK [↑]	t ivshe	SCK, SIN	operation output pin:	30	_	ns
$SCK^{\uparrow} \rightarrow valid SIN hold time$	tshixe	SCK, SIN	C∟ = 80 pF + 1 TTL	tмськ*3 + 30	—	ns
SCK fall time	t⊧	SCK	1		10	ns
SCK rise time	tR	SCK	1		10	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

Sampling is executed at the falling edge of the sampling clock^{*1}, and serial clock delay is disabled^{*2}. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

Parameter	Symbol	Din nomo	Condition	Va	Unit	
Parameter	Symbol	Pin name	Condition	Min	Max	Unit
Serial clock cycle time	t scyc	SCK		5 tmclk*3	—	ns
$SCK^{\uparrow} o SOT$ delay time	t shovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsli	SCK, SIN	operation output pin: C∟ = 80 pF + 1 TTL	tмськ*3 + 80	—	ns
$SCK{ ightarrow}{ ightarrow}$ valid SIN hold time	tslixi	SCK, SIN		0	—	ns
Serial clock "H" pulse width	t s∺s∟	SCK		$3 \ t_{\text{MCLK}^{\star 3}} - t_{\text{R}}$	—	ns
Serial clock "L" pulse width	t s∟sн	SCK		tмськ*3 + 10	—	ns
$SCK^{\uparrow} o SOT$ delay time	t shove	SCK, SOT	External clock	_	2 t мськ* ³ + 60	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsle	SCK, SIN	operation output pin:	30	—	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixe	SCK, SIN	C∟ = 80 pF + 1 TTL	tмськ*3 + 30	—	ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	tR	SCK			10	ns

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Sampling is executed at the rising edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit
Farameter	Symbol	Fill fidfile	Condition	Min	Мах	
Serial clock cycle time	tscyc	SCK		5 t MCLK* ³	—	ns
$SCK^{\uparrow} \to SOT$ delay time	t shovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsli		operation output pin:	tмськ*3 + 80	—	ns
$SCK{ ightarrow}{ ightarrow}$ valid SIN hold time	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	—	ns
$SOT o SCK \downarrow delay$ time	t sovLI	SCK, SOT		3tмськ*3 – 70	—	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

Sampling is executed at the falling edge of the sampling clock*1, and serial clock delay is enabled*2. (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

Parameter	Symbol	Pin name	Condition	Va	Unit	
Farameter	Symbol	Fin name	Condition	Min	Max	Unit
Serial clock cycle time	t scyc	SCK		5 t мськ* ³	—	ns
$SCK{\downarrow} o SOT$ delay time	tslovi	SCK, SOT	Internal clock	-50	+50	ns
Valid SIN $ ightarrow$ SCK \uparrow	t ivshi		operation output pin:	tмськ*3 + 80	—	ns
$SCK^{\uparrow} \rightarrow valid SIN hold time$	t shixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0	—	ns
$SOT o SCK^{\uparrow}delay$ time	tsovнi	SCK, SOT		3tMCLK*3 - 70	—	ns

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

18.4.7 Low-voltage Detection

(Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol		Value		Unit	Remarks			
Parameter	Symbol -	Min	Тур	Мах	Unit	Remarks			
		2.52	2.7	2.88					
Deleges veltage*		2.61	2.8	2.99	V	At now or our plu rice			
Release voltage*	Vdl+	2.89	3.1	3.31	v	At power supply rise			
		3.08	3.3	3.52					
		2.43	2.6	2.77					
Detection voltage*	Vdl-	2.52	2.7	2.88	V	At power supply fall			
Delection voltage	V DL-	2.80	3	3.20					
		2.99	3.2	3.41					
Hysteresis width	VHYS	_	—	100	mV				
Power supply start voltage	Voff		_	2.3	V				
Power supply end voltage	Von	4.9	_	_	V				
Power supply voltage change time (at power supply rise)	tr	650	_		μs	Slope of power supply that the reset release signal generates within the rating (V _{DL+})			
Power supply voltage change time (at power supply fall)	tr	650	_		μs	Slope of power supply that the reset release signal generates within the rating (V _{DL-})			
Reset release delay time	ta1		—	30	μs				
Reset detection delay time	t _{d2}		_	30	μs				
LVD reset threshold voltage transition stabilization time	tstb	10		—	μs				

*: After the LVD reset is enabled by the LVD reset circuit control register (LVDCC), the release voltage and the detection voltage can be selected by using the LVD reset voltage selection ID register (LVDR) in the low-voltage detection reset circuit. For details of the LVDCC register and the LVDR register, refer to "CHAPTER 17 LOW-VOLTAGE DETECTION RESET CIRCUIT" in "New 8FX MB95810K Series Hardware Manual".

18.4.8 I²C Bus Interface Timing

		Pin name			Va	ue		
Parameter	Symbol		Condition	Standard- mode		Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL, SDA		4.0	_	0.6	_	μs
SCL clock "L" width	tLOW	SCL		4.7	—	1.3		μs
SCL clock "H" width	tнigн	SCL		4.0	—	0.6		μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL, SDA	R = 1.7 kΩ, C = 50 pF*1	4.7	_	0.6		μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	thd;dat	SCL, SDA	0 00 pi	0	3.45*2	0	0.9*3	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL, SDA		0.25	_	0.1	_	μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t su;sто	SCL, SDA		4	_	0.6	_	μs
Bus free time between STOP condition and START condition	tbur	SCL, SDA		4.7	_	1.3	_	μs

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

*2: The maximum the;DAT in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (tLow) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of tsu;DAT ≥ 250 ns is fulfilled.

Denne	.	Pin	0		ue ^{*2}			
	Symbol	name	Condition	Min	Max	Unit	Remarks	
SCL clock "L" width	t LOW	SCL		(2 + nm/2)tмськ – 20	_	ns	Master mode	
SCL clock "H" width	t high	SCL		(nm/2)tмськ – 20	(nm/2)tмськ + 20	ns	Master mode	
START condition hold time	thd;sta	SCL, SDA0		(-1 + nm/2)tмськ – 20	(-1 + nm)tмськ + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.	
STOP condition setup time	t su;sто	SCL, SDA		(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
START condition setup time	tsu;sta	SCL, SDA		(1 + nm/2)tмськ – 20	(1 + nm/2)tмськ + 20	ns	Master mode	
Bus free time between STOP condition and START condition	t BUF	SCL, SDA	R = 1.7 kΩ,	(2 nm + 4) tмськ – 20	_	ns		
Data hold time	t hd;dat	SCL, SDA	R = 1.7 KS2, C = 50 pF ^{*1}	3 tмс∟к – 20	_	ns	Master mode	
Data setup time	tsu;dat	SCL, SDA		(-2 + nm/2) tмс∟к – 20	(-1 + nm/2) tмс∟к + 20	ns	Master mode It is assumed that "L" of SCL is not extended. The minimum value is applied to the first bit of continuous data. Otherwise, the maximum value is applied.	
Setup time between clearing interrupt and SCL rising	tsu;int	SCL		(nm/2) tмськ – 20	(1 + nm/2) tмськ + 20	ns	The minimum value is applied to the interrupt at the ninth SCL \downarrow . The maximum value is applied to the interrupt at the eighth SCL \downarrow .	
SCL clock "L" width	t LOW	SCL		4 tmclk – 20	_	ns	At reception	
SCL clock "H" width	tніgн	SCL		4 tmclk – 20	—	ns	At reception	

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin	Condition	Value* ²			Remarks	
Faranieler	Symbol	name	Condition	Min	Max	Unit	Remarks	
START condition detection	thd;sta	SCL, SDA		2 tмськ – 20	_	ns	No START condition is detected when 1 tмс∟κ is used at reception.	
STOP condition detection	tsu;sto	SCL, SDA		2 tмськ – 20	_	ns	No STOP condition is detected when 1 tмс∟к is used at reception.	
RESTART condition detection condition	tsu;sta	SCL, SDA	R = 1.7 kΩ, C = 50 pF*1	2 tмськ – 20	_	ns	No RESTART condition is detected when 1 tмс∟к is used at reception.	
Bus free time	t BUF	SCL, SDA	C = 50 pr	2 tмськ – 20	_	ns	At reception	
Data hold time	t hd;dat	SCL, SDA		2 tмськ – 20	_	ns	At slave transmission mode	
Data setup time	t su;dat	SCL, SDA		tLow $- 3$ tMcLK $- 20$	_	ns	At slave transmission mode	
Data hold time	t hd;dat	SCL, SDA		0	_	ns	At reception	
Data setup time	tsu;dat	SCL, SDA		tмськ – 20	_	ns	At reception	
SDA↓ → SCL↑ (with wakeup function in use)	twakeup	SCL, SDA		Oscillation stabilization wait time +2 t _{MCLK} – 20		ns		

(Vcc = 5.0 V±10%, Vss = 0.0 V, T_A = -40 °C to +85 °C)

*1: R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA0 lines.

*2: • See "Source Clock/Machine Clock" for tMCLK.

- m represents the CS[4:3] bits in the I²C clock control register (ICCR0).
- n represents the CS[2:0] bits in the I²C clock control register (ICCR0).
- The actual timing of the I²C bus interface is determined by the values of m and n set by the machine clock (tmcLK) and the CS[4:0] bits in the ICCR0 register.

• Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < tmclk (machine clock) < 16.25 MHz.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

- $\begin{array}{ll} (m, n) = (1, 8) & : 0.9 \text{ MHz} < t_{\text{MCLK}} \leq 1 \text{ MHz} \\ (m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) & : 0.9 \text{ MHz} < t_{\text{MCLK}} \leq 2 \text{ MHz} \end{array}$
- $\begin{array}{ll} (m,\,n) = (1,\,22),\,(5,\,4),\,(6,\,4),\,(7,\,4),\,(8,\,4) & \qquad : 0.9 \; MHz < t_{MCLK} \leq 2 \; MHz \\ (m,\,n) = (1,\,38),\,(5,\,8),\,(6,\,8),\,(7,\,8),\,(8,\,8) & \qquad : 0.9 \; MHz < t_{MCLK} \leq 4 \; MHz \end{array}$
- (m, n) = (1, 98), (5, 22), (6, 22), (7, 22)(m, n) = (1, 98), (5, 22), (6, 22), (7, 22) $(0.9 \text{ MHz} < \text{tmcLk} \le 10 \text{ MHz}$
- (m, n) = (8, 22) (0, 22), (0, 22), (7, 22) (0, 900) (0, 90
- Fast-mode:

(m, n) = (5, 8)

m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{MCLK}$ (machine clock) < 16.25 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

(m, n) = (1, 8)(m, n) = (1, 22), (5, 4)

(m, n) = (1, 38), (6, 4), (7, 4), (8, 4)

e clock are determined by the settings of : 3.3 MHz < t_{MCLK} ≤ 4 MHz : 3.3 MHz < t_{MCLK} ≤ 8 MHz : 3.3 MHz < t_{MCLK} ≤ 10 MHz : 3.3 MHz < t_{MCLK} ≤ 16.25 MHz

18.4.9 UART/SIO, Serial I/O Timing

Parameter	Symbol	Pin name	Condition	Va	Unit	
Faranielei	Symbol	Fininanie	Condition	Min	Мах	Unit
Serial clock cycle time	tscyc	UCK0		4 t мськ*	—	ns
$UCK \downarrow \rightarrow UO$ time	tslov	UCK0, UO0	Internal clock operation	-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UI0		2 tmclk*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK0, UI0		2 tmclk*	_	ns
Serial clock "H" pulse width	ts∺s∟	UCK0		4 t мськ*	-	ns
Serial clock "L" pulse width	t s∟sн	UCK0		4 t мськ*	_	ns
UCK $\downarrow \rightarrow$ UO time	tslov	UCK0, UO0	External clock operation	_	190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCK0, UI0		2 tmclk*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tsнıx	UCK0, UI0		2 t мськ*		ns

18.4.10 Comparator Timing

(Vcc = 2.88 V to 5.5 V, Vss = 0.0 V, T_A = -40 °C to +85 °C)

Paramotor	Parameter Pin name		Value			Remarks	
Farameter		Min	Тур	Max	Unit	Remarks	
Voltage range	CMP0_P, CMP0_N, CMP1_P, CMP1_N	0	_	Vcc – 1.3	V		
Offset voltage	CMP0_P, CMP0_N, CMP1_P, CMP1_N	-15	_	+15	mV		
Delay time	CMP0_O,		650	1200	ns	Overdrive 5 mV	
Delay time	CMP1_O		140	420	ns	Overdrive 50 mV	
Power down delay	CMP0_O, CMP1_O	_	_	1200	ns	Power down recovery PD: $1 \rightarrow 0$	
Power up stabilization wait time	CMP0_O, CMP1_O			1200	ns	Output stabilization time at power up	

18.4.11 BGR for Comparator

(Vcc = 2.88 V to 5.5	5 V, Vss = 0.0 V, TA	$A = -40 ^{\circ}C \text{ to } +85 ^{\circ}C)$
----------------------	----------------------	--

Parameter	Symbol		Value		Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Unit	Remains
Power up stabilization wait time	_	_	_	150	μs	Load: 10 pF
Output voltage	VBGR	1.1495	1.21	1.2705	V	

18.5 A/D Converter

18.5.1 A/D Converter Electrical Characteristics

Parameter			Value			
	Symbol	Min Typ Max			Unit	Remarks
Resolution				10	bit	
Total error		-3		+3	LSB	
Linearity error	1 —	-2.5	—	+2.5	LSB	
Differential linearity error		-1.9	_	+1.9	LSB	
Zero transition voltage	Vот	AVss – 7.2 LSB	AVss + 0.5 LSB	AVss + 8.2 LSB	V	
Full-scale transition voltage	VFST	AVR – 6.2 LSB	AVR – 1.5 LSB	AVR + 9.2 LSB	V	
Compare time	—	3		10	μs	$2.7 \text{ V} \le \text{AV}\text{cc} \le 5.5 \text{ V}$
Sampling time	_	0.941	_	×	μs	2.7 V \leq AVcc \leq 5.5 V, with external impedance $<$ 3.3 k Ω and external capacitance = 10 pF
Analog input current	Iain	-0.3	—	+0.3	μA	
Analog input voltage	VAIN	AVss	—	AVR	V	
Reference voltage	_	AVcc - 0.1	—	AVcc	V	Voltage applied to the AVR pin

18.5.2 Notes on Using A/D Converter

• External impedance of analog input and its sampling time

The A/D converter of has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 μ F to the analog input pin.

• A/D conversion error

As |AVR – AVss| decreases, the A/D conversion error increases proportionately.

18.5.3 Definitions of A/D Converter Terms

Resolution

•

It indicates the level of analog variation that can be distinguished by the A/D converter.

When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.

• Linearity error (unit: LSB)

It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("000000000" $\leftarrow \rightarrow$ "0000000001") of a device to the full-scale transition point ("1111111111" $\leftarrow \rightarrow$ "111111110") of the same device.

• Differential linear error (unit: LSB)

It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value. Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

18.6 Flash Memory Program/Erase Characteristics

Parameter	Value			Unit	Remarks
Min Typ Max		Unit	Remarks		
Sector erase time (2 Kbyte sector)	—	0.3* ¹	1.6* ²	s	The time of writing "0x00" prior to erasure is excluded.
Sector erase time (32 Kbyte sector)	—	0.6* ¹	3.1* ²	s	The time of writing "0x00" prior to erasure is excluded.
Byte writing time	—	17	272	μs	System-level overhead is excluded.
Program/erase cycle	100000		_	cycle	
Power supply voltage at program/erase	2.4	_	5.5	V	
Flash memory data retention time	20* ³	_	_		Average T _A = +85 °C Number of program/erase cycles: 1000 or below
	10* ³	_	_	year	Average $T_A = +85 \ ^{\circ}C$ Number of program/erase cycles: 1001 to 10000 inclusive
	5* ³	_	_		Average $T_A = +85 \ ^{\circ}C$ Number of program/erase cycles: 10001 or above

*1: Vcc = 5.5 V, T_A = +25 °C, 0 cycle

*2: Vcc = 2.4 V, T_A = +85 °C, 100000 cycles

*3: These values were converted from the result of a technology reliability assessment. (These values were converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85 °C.)

19. Sample Characteristics

Icc - Vcc $T_A = +25 \ ^{\circ}C$, $F_{MP} = 2, 4, 8, 10, 16 \ MHz$ (divided by 2) Vcc = 5.5 V, FMP = 2, 4, 8, 10, 16 MHz (divided by 2) Main clock mode with the external clock operating Main clock mode with the external clock operating 20 FMP = 16 MHz -----FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz _ _ _ 15 FMP = 2 MHz loc[mA] 10 5 :----0 2 3 4 5 6 7 Vcc[V] Iccs – Vcc $T_A = +25 \degree C$, $F_{MP} = 2, 4, 8, 10, 16 \text{ MHz}$ (divided by 2) Main sleep mode with the external clock operating 10 FMP = 16 MHz FMP = 10 MHz FMP = 8 MHz FMP = 4 MHz FMP = 2 MHz · · _ · ____ lccs[mA] 2 :-------------0 7 2 3 5 6 Vcc[V] ICCL – VCC $T_A = +25 \ ^{\circ}C$, $F_{MPL} = 16 \ kHz$ (divided by 2) Subclock mode with the external clock operating 100 80 60 loct[µA]

Icc – Ta

20

40

20

2

3

4

Vcc[V]

5

6

Input voltage characteristics

· Output voltage characteristics

• Pull-up characteristics

20. Ordering Information

Part number	Package
MB95F814KPMC1-G-SNE2 MB95F816KPMC1-G-SNE2 MB95F818KPMC1-G-SNE2	64-pin plastic LQFP (FPT-64P-M38)
MB95F814KPMC-G-SNE2 MB95F816KPMC-G-SNE2 MB95F818KPMC-G-SNE2 MB95F818KPMC-G-UNE2	64-pin plastic LQFP (FPT-64P-M39)

21. Package Dimension

64-pin plastic LQFP	Lead pitch	0.65 mm
	Package width \times package length	12.00 mm × 12.00 mm
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.70 mm MAX
	Weight	0.47 g
(FPT-64P-M39)		

22. Major Changes In This Edition

Spansion Publication Number: DS702-00015-2v0-E

Page	Section	Details
18	PIN CONNECTIONDBG pin	Revised details of "• DBG pin".
	• RST pin	Revised details of "• RST pin".
19	• C pin	Corrected the following statement. The bypass capacitor for the V _{CC} pin must have a capacitance larger than Cs. \rightarrow The decoupling capacitor for the V _{CC} pin must have a capacitance equal to or larger than the capacitance of Cs.
79	 I/O PORTS 11. Port F (4) Port F operations Operation as an input port 	Added the following statement. For a pin shared with other peripheral functions, disable the output of such peripheral functions.
82	12. Port G(4) Port G operationsOperation as an input port	Added the following statement. For a pin shared with other peripheral functions, disable the output of such peripheral functions.
89	 ELECTRICAL CHARACTERISTICS Recommended Operating Conditions 	Corrected the following statement in the remark of the parameter "Decoupling capacitor". The bypass capacitor for the Vcc pin must have a capacitance larger than Cs. \rightarrow The decoupling capacitor for the Vcc pin must have a capacitance acapacitance equal to or larger than the capacitance of Cs.
		Revised the remark in "• DBG/RST/C pins connection diagram".
90	3. DC Characteristics	Revised the remark of the parameter "Input leak current (Hi-Z output leak current)". When pull-up resistance is disabled → When the internal pull-up resistor is disabled Renamed the parameter "Pull-up resistance" to "Internal pull-up
		resistor". Revised the remark of the parameter "Internal pull-up resistor". When pull-up resistance is enabled → When the internal pull-up resistor is enabled
95	4. AC Characteristics (1) Clock Timing	Corrected the pin names of the parameter "Input clock rising time and falling time". X0 \rightarrow X0, X0A X0, X1 \rightarrow X0, X1, X0A, X1A

NOTE: Please see "Document History" about later revised information.

Document History Page

Document Title: MB95810K Series, New 8FX 8-bit Microcontrollers Document Number: 002-04694				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	AKIH	05/27/2013	Migrated to Cypress and assigned document number 002-08453. No change to document contents or format.
*A	5193921	AKIH	03/29/2016	Updated to Cypress template Added MB95F818KPMC-G-UNE2 in "Ordering Information".
*В	5845951	YSAT	08/07/2017	Adapted new Cypress logo

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.