
October 2017 DocID031122 Rev 1 1/19

www.st.com

UM2300
User manual

Getting started with X-CUBE-SPN14 stepper motor driver
software expansion for STM32Cube

Introduction
The X-CUBE-SPN14 expansion package for STM32Cube gives you full control of stepper motor
operations.

When combined with one or more X-NUCLEO-IHM14A1 expansion boards, this software allows a
compatible STM32 Nucleo board to control one or more stepper motors.

It is built on top of STM32Cube software technology for easy portability across different STM32
microcontrollers.

The software comes with a sample implementation for one stepper motor. It is compatible with STM32
NUCLEO-F401RE, NUCLEO-F334R8, NUCLEO-F030R8 or NUCLEO-L053R8 boards with an
XNUCLEO-IHM14A1 expansion board mounted on top.

Contents UM2300

2/19 DocID031122 Rev 1

Contents

1 Acronyms and abbreviations ... 5

2 What is STM32Cube? .. 6

2.1 STM32Cube architecture .. 6

3 X-CUBE-SPN14 software expansion for STM32Cube 8

3.1 Overview ... 8

3.2 Architecture ... 9

3.3 Folder structure ... 10

3.3.1 BSP folder .. 11

3.3.2 Projects folder ... 12

3.4 Software required resources ... 12

3.5 APIs .. 13

3.6 Sample application description .. 13

4 System setup guide ... 14

4.1 Hardware description .. 14

4.1.1 STM32 Nucleo platform .. 14

4.1.2 X-NUCLEO-IHM14A1 stepper motor driver expansion board 15

4.1.3 Miscellaneous hardware components .. 15

4.2 Software description .. 15

4.3 Hardware and software setup ... 16

4.3.1 Setup to drive a single motor .. 16

5 Revision history .. 18

UM2300 List of tables

DocID031122 Rev 1 3/19

List of tables

Table 1: List of acronyms .. 5
Table 2: Required resources for the X-CUBE-SPN14 software ... 12
Table 3: Document revision history .. 18

List of figures UM2300

4/19 DocID031122 Rev 1

List of figures

Figure 1: Firmware architecture .. 6
Figure 2: X-CUBE-SPN14 software architecture .. 10
Figure 3: Folder structure ... 10
Figure 4: STM32 Nucleo board ... 14
Figure 5: X-NUCLEO-IHM14A1 stepper motor driver expansion board ... 15
Figure 6: Board connections ... 16

UM2300 Acronyms and abbreviations

DocID031122 Rev 1 5/19

1 Acronyms and abbreviations
Table 1: List of acronyms

Acronym Description

API Application programming interface

BSP Board support package

CMSIS Cortex® microcontroller software interface standard

HAL Hardware abstraction layer

IDE Integrated development environment

LED Light emitting diode

What is STM32Cube? UM2300

6/19 DocID031122 Rev 1

2 What is STM32Cube?

STMCube™ represents the STMicroelectronics initiative to make developers’ lives easier
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.

STM32Cube version 1.x includes:

 STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.

 A comprehensive embedded software platform specific to each series (such as the
STM32CubeF4 for the STM32F4 series), which includes:

 the STM32Cube HAL embedded abstraction-layer software, ensuring maximized
portability across the STM32 portfolio

 a consistent set of middleware components such as RTOS, USB, TCP/IP and
graphics

 all embedded software utilities with a full set of examples

2.1 STM32Cube architecture

The STM32Cube firmware solution is built around three independent levels that can easily
interact with one another, as described in the diagram below.

Figure 1: Firmware architecture

Level 0: This level is divided into three sub-layers:

 Board Support Package (BSP): this layer offers a set of APIs relative to the hardware
components in the hardware boards (Audio codec, IO expander, Touchscreen, SRAM
driver, LCD drivers. etc…); it is based on modular architecture allowing it to be easily

UM2300 What is STM32Cube?

DocID031122 Rev 1 7/19

ported on any hardware by just implementing the low level routines. It is composed of
two parts:

 Component: is the driver relative to the external device on the board and not
related to the STM32, the component driver provides specific APIs to the external
components of the BSP driver, and can be ported on any other board.

 BSP driver: links the component driver to a specific board and provides a set of
easy to use APIs. The API naming convention is BSP_FUNCT_Action(): e.g.,
BSP_LED_Init(), BSP_LED_On().

 Hardware Abstraction Layer (HAL): this layer provides the low level drivers and the
hardware interfacing methods to interact with the upper layers (application, libraries
and stacks). It provides generic, multi-instance and function-oriented APIs to help
offload user application development time by providing ready to use processes. For
example, for the communication peripherals (I²C, UART, etc.) it provides APIs for
peripheral initialization and configuration, data transfer management based on polling,
interrupt or DMA processes, and communication error management. The HAL Drivers
APIs are split in two categories: generic APIs providing common, generic functions to
all the STM32 series and extension APIs which provide special, customized functions
for a specific family or a specific part number.

 Basic peripheral usage examples: this layer houses the examples built around the
STM32 peripherals using the HAL and BSP resources only.

Level 1: This level is divided into two sub-layers:

 Middleware components: set of libraries covering USB Host and Device Libraries,
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction among the
components in this layer is performed directly by calling the feature APIs, while vertical
interaction with low-level drivers is managed by specific callbacks and static macros
implemented in the library system call interface. For example, FatFs implements the
disk I/O driver to access a microSD drive or USB Mass Storage Class.

 Examples based on the middleware components: each middleware component comes
with one or more examples (or applications) showing how to use it. Integration
examples that use several middleware components are provided as well.

Level 2: This level is a single layer with a global, real-time and graphical demonstration
based on the middleware service layer, the low level abstraction layer and basic peripheral
usage applications for board-based functions.

X-CUBE-SPN14 software expansion for
STM32Cube

UM2300

8/19 DocID031122 Rev 1

3 X-CUBE-SPN14 software expansion for STM32Cube

3.1 Overview

The X-CUBE-SPN14 software package expands the functionality of STM32Cube. Its key
features include:

 A driver layer for complete management of the STSPIN820 (low power stepper motor
driver) device integrated in the X-NUCLEO-IHM14A1 expansion board

 Read and write of the device parameters, GPIO, PWM and IRQ configuration, micro-
stepping, direction position, speed, acceleration, deceleration and torque controls,
automatic full-step switch management, high impedance or hold stop mode selection,
enable and stand-by management

 Fault interrupt handling

 Single stepper motor control sample application

 Easy portability across different MCU families, thanks to STM32Cube

 Free, user-friendly license terms

The software implements pseudo registers and motion commands by:

 configuring timers used to generate step clock and voltage reference

 managing device parameters like acceleration, deceleration, min. and max. speed,
positions at speed profile boundaries, mark position, micro-stepping mode, direction,
motion state, etc.

The software handles one STSPIN820 device.

At each tick timer pulse end, a callback is executed to call the step clock handler which
controls the motor motion by managing:

 motion status (e.g., stop motor at target destination)

 motor direction via GPIO level

 relative and absolute motor position in microsteps

 the speed through zero, positive and negative acceleration

The speed is set by varying the step clock frequency and, optionally, the step mode when
the automatic full step switch feature is enabled. The timer used for the step clock is
configured in output compare mode. A new capture compare register value is calculated at
each step clock handler call to achieve frequency control.

The speed is a linear function of the step clock frequency for a given micro-stepping mode,
which can be varied by the software from full to 1/256th step.

To use the STSPIN820 driver library, you must run the initialization function which:

 sets up the required GPIOs to enable the bridges and manage fault pin EN\FAULT,
dedicated MODE1, MODE2 and MODE3 step selection pins, the DIR pin for motor
direction, the DECAY pin for decay mode selection and the standby reset pin
STBY\RESET;

 sets up the timer in output compare mode for the STCK pin and the timer reference
voltage generation in PWM mode for REF pin;

 loads the driver parameters with values from stspin820_target_config.h or defined in
the main function using a dedicated initialization structure.

UM2300 X-CUBE-SPN14 software expansion for
STM32Cube

DocID031122 Rev 1 9/19

Driver parameters can be modified after initialization by calling specific functions. You can
also write callback functions and attach them to:

 the flag interrupt handler to perform certain actions when an overcurrent or a thermal
alarm is reported

 the error handler which is called by the library when it reports an error

Subsequent motion commands include:

 BSP_MotorControl_Move to move a given number of steps in a specific direction

 BSP_MotorControl_GoTo, BSP_MotorControl_GoHome,

BSP_MotorControl_GoMark to go to a specific position using the shortest path

 BSP_MotorControl_CmdGoToDir to go in a specific direction to a specific position

 BSP_MotorControl_Run to run indefinitely

The speed profile is completely handled by the microcontroller. The motor starts moving at

the BSP_MotorControl_SetMinSpeed minimum speed setting, which is then altered at

each step by the BSP_MotorControl_SetAcceleration acceleration value.

If the target position of a motion command is far enough, the motor performs a trapezoidal
move by:

 accelerating with the device acceleration parameter

 remaining steady at BSP_MotorControl_SetMaxSpeed maximum speed

 decelerating by BSP_MotorControl_SetDeceleration

 stopping at the target destination

If the target position is too close for the motor to reach maximum speed, it performs a
triangular move involving:

 acceleration

 deceleration

 stopping at the target destination

3.2

A motion command can be stopped anytime with BSP_MotorControl_SoftStop

progressively decreasing the speed using the deceleration parameter or the

BSP_MotorControl_HardStop command which immediately stops the motor. The

power bridge is automatically disabled when the motor stops if the HIZ_MODE stop mode

was previously set (BSP_MotorControl_SetStopMode).

Direction, speed, acceleration and deceleration can be changed either when the motor is

stopped or when the motion is requested via BSP_MotorControl_Run.

To block new commands before the completion of previous ones,

BSP_MotorControl_WaitWhileActive locks program execution until the motor stops.

BSP_MotorControl_SelectStepMode can change the step mode from full to 1/256th

step. When step mode is changed, the device and the current position and speed are reset.

Architecture

This software expansion for STM32Cube fully complies with STM32Cube architecture and
expands it to enable the development of applications using stepper motor drivers.

X-CUBE-SPN14 software expansion for
STM32Cube

UM2300

10/19 DocID031122 Rev 1

Figure 2: X-CUBE-SPN14 software architecture

The software is based on the STM32CubeHAL hardware abstraction layer for the STM32
microcontroller. The package extends STM32Cube with a board support package (BSP) for
the motor control expansion board and a BSP component driver for the STSPIN820 low
voltage stepper motor driver.

The software layers used by the application software are:

STM32Cube HAL layer: a simple, generic and multi-instance set of APIs (application
programming interfaces) to interact with upper application, library and stack layers. It is
composed of generic and extension APIs based on a common architecture so that layers
built on it, such as the middleware layer, can function without requiring specific
microcontroller Unit (MCU) hardware configurations. This structure improves library code
reusability and guarantees an easy portability on other devices.

Board support package (BSP) layer: supports the peripherals on the STM32 Nucleo
board, except for the MCU. This limited set of APIs provides a programming interface for
certain board specific peripherals like the LED and the user button, and helps in identifying
the specific board version. The motor control BSP provides the programming interface for
various motor driver components. It is associated with the BSP component for the
STSPIN820 motor driver in the X-CUBE-SPN14 software.

3.3 Folder structure

Figure 3: Folder structure

UM2300 X-CUBE-SPN14 software expansion for
STM32Cube

DocID031122 Rev 1 11/19

The software is located in two main folders:

 Drivers, with:

 the STM32Cube HAL files in the STM32L0xx_HAL_Driver,
STM32F0xx_HAL_Driver, STM32F3xx_HAL_Driver or STM32F4xx_HAL_Driver
subfolders. These files are taken directly from the STM32Cube framework and
only include those required to run the motor driver examples.

 a CMSIS folder with the CMSIS (Cortex® microcontroller software interface
standard), vendor-independent hardware abstraction layer for the Cortex-M
processor series from ARM. This folder is also unchanged from the STM32Cube
framework.

 a BSP folder with the code files for X-NUCLEO-IHM14A1 configuration, the
STSPIN820 driver and the motor control API.

 Projects, which contains several use examples of the STSPIN820 motor driver for
different STM32 Nucleo platforms.

3.3.1 BSP folder

The X-CUBE-SPN14 software includes the following BSPs:

3.3.1.1 STM32L0XX-Nucleo/STM32F0XX-Nucleo/STM32F3XX-Nucleo/STM32F4XX-
Nucleo BSPs

These BSPs provide an interface for each compatible STM32 Nucleo board to configure
and use its peripherals with the X-NUCLEO-IHM14A1 expansion board. Each subfolder
has two.c/.h file pairs:

 stm32XXxx_nucleo.c/h: these unmodified STM32Cube framework files provide the
user button and LED functions for the specific STM32 Nucleo board.

 stm32XXxx_nucleo_ihm14a1.c/h: these files are dedicated to the configuration of
the PWMs, the GPIOs, and interrupt enabling/disabling required for X-NUCLEO-
IHM14A1 expansion board operation.

3.3.1.2 Motor control BSP

This BSP provides a common interface to access the driver functions of various motor
drivers like L6474, powerSTEP01, L6208 and STSPIN820 via
MotorControl/motorcontrol.c/h file pair. These files define all the driver configuration and
control functions, which are then mapped to the functions of the motor driver component
used on the given expansion board via motorDrv_t structure file (defined in
Components\Common\motor.h.). This structure defines a list of function pointers which are
filled during its instantiation in the corresponding motor driver component. For X-CUBE-
SPN14, the structure is called stspin820Drv (see file:
BSP\Components\stspin820\stspin820.c).

As the motor control BSP is common for all motor driver expansion boards, all its functions
may not be available for a given expansion board. Unavailable functions are replaced by
null pointers during the instantiation of the motorDrv_t structure in the driver component.

3.3.1.3 STSPIN280 BSP component

The STSPIN820 BSP component provides the driver functions of the STSPIN820 motor
driver in the folder stm32_cube\Drivers\BSP\Components\STSPIN820.

This folder has 3 files:

 stspin820.c: core functions of the STSPIN820 driver

X-CUBE-SPN14 software expansion for
STM32Cube

UM2300

12/19 DocID031122 Rev 1

 stspin820.h: declaration of the STSPIN820 driver functions and their associated
definitions

 stspin820_target_config.h: predefined values for the STSPIN820 parameters and for
the motor devices context

3.3.2 Project folder

For each STM32 Nucleo platform, one example project is available in
stm32_cube\Projects\Multi\Examples\MotionControl\:

 IHM14A1_ExampleFor1Motor examples of control functions for single-motor
configurations

The example has a folder for each compatible IDE:

 EWARM for IAR

 MDK-ARM for Keil

 SW4STM32 for OpenSTM32

The following code files are also included:

 inc\main.h: Main header file

 inc\ stm32xxxx_hal_conf.h: HAL configuration file

 inc\stm32xxxx_it.h: header for the interrupt handler

 src\main.c: main program (code of the example based on the motor control library for
STSPIN820)

 src\stm32xxxx_hal_msp.c: HAL initialization routines

 src\stm32xxxx_it.c: interrupt handler

 src\system_stm32xxxx.c: system initialization

 src\clock_xx.c: clock initialization

3.4 Software required resources

MCU control of a single STSPIN820 (one X-NUCLEO-IHM14A1 board) and communication
between the two is handled through seven GPIOs (STBY\RESET, EN\FAULT, MODE1,
MODE2, MODE3, DIR, DECAY pins) and a PWM for REF pin. The GPIO for the STCK pin
is configured to be used as a TIMER OUTPUT COMPARE alternate function.

For the handling of overcurrent and the overtemperature alarms, the X-CUBE-SPN14
software uses an external interrupt configured on the GPIO used for the EN\FAULT pin,
after it has enabled or disabled the power bridges.

Table 2: Required resources for the X-CUBE-SPN14 software

Resources F4xx Resources F3xx
Resources
F0xx

Resources
L0xx

Pin
Features
(board)

Port A GPIO 10

EXTI15_10_IRQn

Port A GPIO 10

EXTI15_10_IRQn

Port A GPIO 10

EXTI4_15_IRQn

Port A GPIO 10

EXTI4_15_IRQn
D2

EN/FAULT

(EN)

Port B GPIO 3

Timer2 Ch2

Port B GPIO 3

Timer2 Ch2

Port B GPIO 3

Timer15 Ch1

Port B GPIO 3

Timer2 Ch2
D3

STCK

(CLK)

Port B GPIO 4 D5
DECAY

(DEC)

Port A GPIO 8 D7
DIRECTION

(DIR)

UM2300 X-CUBE-SPN14 software expansion for
STM32Cube

DocID031122 Rev 1 13/19

Resources F4xx Resources F3xx
Resources
F0xx

Resources
L0xx

Pin
Features
(board)

Port A GPIO 9 D8
STBY/RESET

(STBY)

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer3 Ch2

Port C GPIO 7

Timer22 Ch2
D9

PWM REF

(REF)

Port A GPIO 7 D11
MODE3

(M3)

Port A GPIO 6 D12
MODE2

(M2)

Port A GPIO 5 D13
MODE1

(M1)

3.5 APIs

The API of the X-CUBE-SPN14 software is defined in the motor control BSP. Its functions
contain the “BSP_MotorControl_” prefix.

Not all the functions of this module are available for the STSPIN820 and hence
the X-NUCLEO-IHM14A1 expansion board.

3.6

Full user API function and parameter descriptions are compiled in an HTML file in the
software Documentation folder.

Sample application description

An example application using the X-NUCLEO-IHM14A1 expansion board with a compatible
STM32 Nucleo board is provided in the Projects directory, with ready-to-build for multiple
IDEs (see Section 3.3.2: "Project folder").

System setup guide UM2300

14/19 DocID031122 Rev 1

4 System setup guide

4.1 Hardware description

This section describes the hardware components needed to develop a stepper motor
driver-based application using X-CUBE-SPN14.

The following sub-sections describe the individual components.

4.1.1 STM32 Nucleo platform

STM32 Nucleo development boards provide an affordable and flexible way for users to test
solutions and build prototypes with any STM32 microcontroller line.

The Arduino™ connectivity support and ST morpho connectors make it easy to expand the
functionality of the STM32 Nucleo open development platform with a wide range of
specialized expansion boards to choose from.

The STM32 Nucleo board does not require separate probes as it integrates the ST-
LINK/V2-1 debugger/programmer.

The STM32 Nucleo board comes with the comprehensive STM32 software HAL library
together with various packaged software examples.

Figure 4: STM32 Nucleo board

Information regarding the STM32 Nucleo board is available at www.st.com/stm32nucleo

http://www.st.com/stm32nucleo

UM2300 System setup guide

DocID031122 Rev 1 15/19

4.1.2 X-NUCLEO-IHM14A1 stepper motor driver expansion board

The X-NUCLEO-IHM14A1 motor driver expansion board is based on the STSPIN820
monolithic driver for stepper motors.

It represents an affordable, easy-to-use solution for driving stepper motors in your STM32
Nucleo project, implementing motor driving applications such as 2D/3D printers, robotics
and security cameras.

The STSPIN820 implements a PWM current control with constant OFF time adjustable via
an external resistor and a microstepping resolution up to the 256th step.

The X-NUCLEO-IHM14A1 expansion board is compatible with the Arduino UNO R3
connector and the ST morpho connector, so it can be plugged to the STM32 Nucleo
development board and stacked with additional X-NUCLEO expansion boards.

Figure 5: X-NUCLEO-IHM14A1 stepper motor driver expansion board

Information regarding the X-NUCLEO-IHM14A1 expansion board is available on
www.st.com at http://www.st.com/x-nucleo.

4.1.3 Miscellaneous hardware components

To complete the hardware setup, you will need:

 1 bipolar (7 to 45 V) stepper motor

 an external DC power supply with two electric cables for the X-NUCLEO-IHM14A1
board

 a USB type A to mini-B USB cable to connect the STM32 Nucleo board to a PC

4.2 Software description

The following software components are needed in order to set up the suitable development
environment for creating applications based on the motor driver expansion board:

 X-CUBE-SPN14 STM32Cube expansion for STSPIN820 low voltage stepper motor
driver application development. The X-CUBE-SPN14 firmware and related
documentation is available on www.st.com.

 One of the following development tool-chain and compilers:

 Keil RealView Microcontroller Development Kit (MDK-ARM) toolchain V5.17

http://www.st.com/x-nucleo

System setup guide UM2300

16/19 DocID031122 Rev 1

 IAR Embedded Workbench for ARM (EWARM) toolchain V7.40

 OpenSTM32 System Workbench for STM32 (SW4STM32)

4.3 Hardware and software setup

This section describes the hardware and software setup procedure for executing the
provided examples and to develop new applications based on the motor driver expansion
board.

4.3.1 Setup to drive a single motor

Configure the following jumpers on the STM32 Nucleo board:

 JP1 off

 JP5 (PWR) on UV5 side

 JP6 (IDD) on

Configure the X-NUCLEO-IHM14A1 expansion board thus:

 Tune R7 potentiometer to 1 kΩ.

 Set S1, S2, S3 and S4 switch to the pull-down side as in Figure 5: "X-NUCLEO-
IHM14A1 stepper motor driver expansion board". The micro-stepping mode is
selected through the MODE1, MODE2 and MODE3 levels controlled by the STM32
Nucleo board.

Once the board is properly configured:

 Plug the X-NUCLEO-IHM14A1 expansion board on top of the STM32 Nucleo board
via the Arduino UNO connectors

 Connect the STM32 Nucleo board to a PC with the USB cable through USB connector
CN1 to power the board

 Power on the X-NUCLEO-IHM14A1 expansion board by connecting Vin and Gnd
connectors to a DC power supply

 Connect the stepper motor to the X-NUCLEO-IHM14A1 bridge connectors A+/- and
B+/-

Figure 6: Board connections

UM2300 System setup guide

DocID031122 Rev 1 17/19

Once the system setup is ready:

 Open your preferred toolchain

 Depending on the STM32 Nucleo board, open the software project from:

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM14A1_ExampleFor1Mot
or\YourToolChainName\STM32F401RE-Nucleo for Nucleo STM32F401

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM14A1_ExampleFor1Mot
or\YourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F334

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM14A1_ExampleFor1Mot
or\YourToolChainName\STM32F030R8-Nucleo for Nucleo STM32F030

 \stm32_cube\Projects\Multi\Examples\MotionControl\IHM14A1_ExampleFor1Mot
or\YourToolChainName\STM32L053R8-Nucleo for Nucleo STM32L053

 To adapt the default STSPIN820 parameters to your low voltage stepper motor
characteristics, either:

 use BSP_MotorControl_Init with the NULL pointer and open stm32_cube\

Drivers\ BSP\ Components\ STSPIN820\ STSPIN820_target_config.h to modify
the parameters according to your needs

 use BSP_MotorControl_Init with the address of the

initDevicesParameters structure with appropriate values.

 Rebuild all files and load your image into target memory.

 Run the example. The motor automatically starts (See main.c for demo sequence
details).

Revision history UM2300

18/19 DocID031122 Rev 1

5 Revision history
Table 3: Document revision history

Date Version Changes

17-Oct-2017 1 Initial release.

UM2300

 DocID031122 Rev 1 19/19

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

