Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

General Description

The MAX14581/MAX14582 USB-compliant transceivers are designed to minimize the area and external components required to interface low-voltage ASICs to USB. These devices comply with USB 2.0 specification for full-speed-only (12Mbps) operation. The transceivers include an internal 3.3V regulator, an internal 1.5k Ω D+ pullup resistor, and built-in ±15kV ESD HBM protection circuitry to protect the USB I/O ports (D+, D-). The MAX14581/MAX14582 also have internal series resistors, allowing the devices to be wired directly to a USB connector.

These devices operate with logic-supply voltages as low as +1.2V, ensuring compatibility with low-voltage ASICs. A low-power disable mode reduces current consumption to typically less than 13μ A (typ) from V_{BUS}. An enumerate function controls the D+ pullup resistor, allowing devices to logically disconnect while remaining plugged in.

The devices have 36Ω (typ) internal series resistors on D+/D- for direct connection to the USB connector. These devices can be used as either peripheral or host (FS) USB transceivers. As a host USB transceiver, the MAX14581/MAX14582 require external 15k Ω pulldown resistors and driving ENUM logic-low.

The MAX14581 (3-wire) is equipped with DAT and SE0 interface signals. The transceiver provides a USB detection function that monitors the presence of USB $\rm V_{BUS}$ and signals the event by means of a BD pin.

The MAX14582 (5-wire) is equipped with VP, VM, and RCV interface signals. The detection of V_{BUS} in the MAX14582 is encoded as VP = VM = logic-high.

These devices operate over the extended -40°C to $+85^{\circ}$ C temperature range and are available in 12-bump WLP packages.

Applications

Smart Phones Tablets Portable Media Players ebook Readers

Ordering Information and USB Inter-Chip Typical Application Circuits appear at end of data sheet.

Benefits and Features

- Provide Flexible USB Transceiver Design
 - ♦ Supports 3-Wire Interface (MAX14581)
 - ♦ Supports 5-Wire Interface (MAX14582)
 - ♦ USB 2.0 (Full-Speed, 12Mbps)-Compliant Transceiver

 - ♦ Enumeration Input Controls D+ Pullup Resistor
 - \diamond 13µA (typ) Current in Disable Mode
- Minimize PCB Area
 - ♦ Internal Pullup Resistor on D+
 - Internal Series Resistors
- Additional Protection Features Increase System Reliability
 - Low Output Capacitance for Easy Connection to an External USB HS Transceiver in Parallel
 - No Power-Supply Sequencing Required
 - \diamond Ability to Accept D+/D- Voltages Up to 3.6V with V_{BUS} = 0V
 - ♦ 28V-Tolerant V_{BUS} Pin
 - ♦ Bus Detect (BD) Pin for the V_{BUS} Detection (MAX14581 Only)
 - ♦ High-ESD Protection on D+/D- and V_{BUS} ±15kV HBM

Typical Application Circuits

1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

ABSOLUTE MAXIMUM RATINGS

(All Voltages Referenced to GNI	D, unless otherwise noted.)
Supply Voltage (V _{BUS})	-0.3V to +30V
Supply Voltage (VL)	-0.3V to +6V
V _{TRM}	0.3V to min(+6V, V_{BUS} + 0.3V)
D+, D	-0.3V to 6V
VP, VM, SUS, BD, ENUM,	
RCV, OE, DAT, SE0	-0.3V to (V _L +0.3V)
Short-Circuit Current (D+ and D-) to V _{BUS} or GND Continuous

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

WLP

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maxim-ic.com/thermal-tutorial</u>.

ELECTRICAL CHARACTERISTICS

(V_{BUS} = +3.0V to +5.5V, V_L = +1.20V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +3.6V, V_L = +2.5V, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Papag	V _{BUS}		3		5.5	V
Supply Voltage Range	VL		1.2		3.6	v
Regulated Supply Voltage	\/	$V_{BUS} > 3.6V$	3	3.3	3.6	V
Output	V _{TRM}	3.0V < V _{BUS} < 3.6V	2.8		3.6	v
Operating V _{BUS} Supply Current	IVBUS	Full-speed transmitting/receiving at 12Mbps, $C_L = 50pF$ on D+ and D-			8	mA
Operating V _L Supply Current	۱L	Full-speed transmitting/receiving at 12Mbps, $C_L = 15pF$ on receiver outputs, $V_L = 2.5V$		1	2	mA
Full-Speed Idle and SE0 Supply	I _{VBUS} (IDLE)	Full-speed idle: $V_{D+} > 2.7V$, $V_{D-} < 0.3V$, \overline{OE} = high or low		300	500	
Current		SE0: $V_{D+} < 0.3V, V_{D-} < 0.3V, \overline{OE} = high or low$		140	250	μΑ
Static V _L Supply Current	I _{VL(STATIC)}	Full-speed idle, SE0, or suspend mode; \overline{OE} = high or low		1	4	μA
Suppord Value Supply Current		$DAT = SE0 = open, SUS = \overline{OE} = high$ (MAX14581)			33	
Suspend V _{BUS} Supply Current	IVBUS(SUSP)	$VM = VP = open, SUS = \overline{OE} = high$ (MAX14582)			33	μΑ
Disable-Mode V _{BUS} Supply Current	I _{VBUS} (DIS)	$V_L = GND$ or open, V_{BUS} up to 5V		13	23	μA

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

ELECTRICAL CHARACTERISTICS (continued)

(V_{BUS} = +3.0V to +5.5V, V_L = +1.20V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +3.6V, V_L = +2.5V, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	UNITS
Sharing-Mode VL Supply		$V_{BUS} = GND$ or open, $\overline{OE} = low$, DAT = SE0 = high or high-Z, SUS = high, MAX14581			0.1	1	μA
Current	VL(SHARING)	L(SHARING) $V_{BUS} = GND \text{ or open, } \overline{OE} = Iow,$ VP = VM = high or high-Z, SUS = high, MAX14582			0.1	1	μΑ
D+/D- Sharing-Mode Load Current	ID(SHARING)	$V_{BUS} = GND \text{ or ope}$ $\overline{OE} = high \text{ or low}$	en, $V_{D_{-}} = 0V \text{ or } +5.5V$,		0.1	1	μA
V _{BUS} Power-Supply Detection Threshold	V _{TH_VBUS}	$V_L = 1.2V$		2.0	2.4	2.7	V
V _{BUS} Power-Supply Detection Hysteresis	V _{HYST_VBUS}				100		mV
V _L Power-Supply Detection Threshold	V _{TH_VL}	(Note 3)			0.85		V
DIGITAL INPUTS AND OUTPUT	S (VP, VM, DA	T, SE0, RCV, OE, EN	NUM, SUS, BD)				
Input-Voltage Low	V _{IL}					$0.3 \times V_L$	V
Input-Voltage High	VIH			$0.7 \times V_L$			V
Output Voltaga Law	V		$V_{L} > 1.65V$			0.4	— V
Output-Voltage Low	V _{OL}	$I_{OL} = 2mA$	$1.2V < V_{L} < 1.65V$			0.55	
Output-Voltage High	Varia	V_{OH} $I_{OH} = -2mA$ $V_L > 1.65$	$V_{L} > 1.65V$	V _L - 0.4			V
Output-voltage riigh	VOH	10H51114	$1.2V < V_{L} < 1.65V$	V _L - 0.55			v
Input Leakage Current	I _{LKG}			-1		+1	μΑ
ANALOG INPUTS AND OUTPU	TS (D+, D-)						
Differential Input Sensitivity	V _{ID}	V _{D+} - V _{D-}		0.2			V
Differential Common-Mode Voltage	V _{CM}	Includes V _{ID} range		0.8		2.5	V
Single-Ended Input Low Voltage	V _{ILSE}					0.8	V
Single-Ended Input High Voltage	VIHSE			2.0			V
USB Output-Voltage Low	V _{USB_OLD}	$R_{\rm L} = 1.5 k\Omega$ resistor connected to +3.6V				0.3	V
USB Output-Voltage High	V _{USB_OHD}	$R_L = 15k\Omega$ resistor connected to GND		2.8		3.6	V
Internal Pullup Resistance	R _{PULLUP}			1425		1575	Ω
Driver Output Impedance	Z _{DRV}	Steady-state drive		28	36	44	Ω
Input Impedance	Z _{IN}	Driver off		10			MΩ
D+/D- Off Capacitance	C _{USB}	Driver off (Note 3)			8		рF

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

ELECTRICAL CHARACTERISTICS (continued)

(V_{BUS} = +3.0V to +5.5V, V_L = +1.20V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +3.6V, V_L = +2.5V, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
DRIVER CHARACTERISTICS (C	= 50pF)						
Rise Time	t _{FR}	10% to 90% of V _{OHD} -	V _{OLD} ; Figures 1, 6	4		20	ns
Fall Time	t _{FF}	90% to 10% of V _{OHD} -		4		20	ns
Rise/Fall Time Matching	t _{FR} /t _{FF}	Excluding the first trans Figures 1, 6 (Note 3, output impedance)	sition from idle state;	90		110	%
Output Signal Crossover Voltage	V _{CRS_F}	Excluding the first trans Figure 2 (Note 3)	sition from idle state,	1.3		2.0	V
	+	Low-to-high transition;	$V_{L} > 1.65V$			15	
Driver Propagation Dalay	^t PLH_DRV	Figures 2, 6	$1.2V < V_{L} < 1.65V$			20	
Driver-Propagation Delay	+	High-to-low transition;	$V_{L} > 1.65V$			15	ns
	^t PHL_DRV	Figures 2, 6	$1.2V < V_{L} < 1.65V$			20	
		High-to-off transition;	$V_{L} > 1.65V$			15	
Driver-Disable Delay	^t PHZ_DRV	Figures 3, 6	$1.2V < V_{L} < 1.65V$			20	- ns
	t _{PLZ_DRV}	Low-to-off transition; Figures 3, 6	$V_{L} > 1.65V$			15	
			$1.2V < V_{L} < 1.65V$			20	
	^t PZH_DRV	Off-to-high transition; Figures 3, 6	$V_{L} > 1.65V$			15	ns
			$1.2V < V_{L} < 1.65V$			20	
Driver-Enable Delay	t _{PZL_DRV}	Off-to-low transition; Figures 3, 6	$V_{L} > 1.65V$			15	
			$1.2V < V_{L} < 1.65V$			20	
RECEIVER (C _L = 15pF)		1	1				1
		Low-to-high transition;	$V_{L} > 1.65V$			15	
Differential Receiver Propagation	^t PLH_RCV	Figures 4, 7	$1.2V < V_{L} < 1.65V$			20	
Delay		High-to-low transition;	$V_{L} > 1.65V$			15	ns
	^t PHL_RCV	Figures 4, 7	$1.2V < V_{L} < 1.65V$			20	
		Low-to-high transition;	$V_{L} > 1.65V$			15	
Single-Ended Receiver	^t PLH_SE	Figures 4, 7	$1.2V < V_{L} < 1.65V$			20	-
Propagation Delay		High-to-low transition;	$V_{L} > 1.65V$			15	ns
	^t PHL_SE	Figures 4, 7	$1.2V < V_{L} < 1.65V$			20	-
		High-to-off transition,	$V_{L} > 1.65V$			15	
Single-Ended Receiver Disable	^t PHZ_SE	Figure 5	$1.2V < V_{L} < 1.65V$			20	- ns
Delay		Low-to-off transition,	$V_{\rm I} > 1.65V$			15	
	^t PLZ_SE	Figure 5	$1.2V < V_{L} < 1.65V$			20	

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

ELECTRICAL CHARACTERISTICS (continued)

(V_{BUS} = +3.0V to +5.5V, V_L = +1.20V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +3.6V, V_L = +2.5V, and T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	МАХ	UNITS
Single-Ended Receiver Enable Delay	t	Off-to-high transition,	$V_{L} > 1.65V$			15	
	^t PZH_SE	Figure 5	$1.2V < V_{L} < 1.65V$			20	
	t _{PZL_SE} Off-to-low trar Figure 5	Off-to-low transition,	$V_{L} > 1.65V$			15	ns
		Figure 5	$1.2V < V_{L} < 1.65V$			20	
ESD PROTECTION			· · · · · · · · · · · · · · · · · · ·				
V _{BUS}		1µF external ceramic capacitor, HBM			±15		kV
D+, D-					±15		kV

Note 2: All specifications are 100% production tested at $T_A = +25^{\circ}C$, unless otherwise noted. Specifications are over -40°C to +85°C and are guaranteed by design.

Note 3: Guaranteed by design, not production tested.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Timing Diagrams

tphl_drv

t_{PHL} DRV

tphl_drv

VCRS_F

VCRS_F

RISE/FALL TIMES < 4ns

Figure 2. Timing of (DAT and SE0) and (VP and VM) to D+ and D- $\,$

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Figure 3. Driver Enable and Disable Timing

Timing Diagrams (continued)

Figure 4. D+/D- Timing to VP, VM, and RCV

Figure 5. Receiver Enable and Disable Timing

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Figure 6. Test Circuit for Enable Time, Disable Time, Transmitter Propagation Delay, and Transmitter Rise/Fall Time

Timing Diagrams (continued)

Figure 7. Test Circuit for Receiver Propagation Delay

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

(V_{BUS} = +3.6V, V_L = +2.5V, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics

V_{BUS} (V)

Industry's Smallest and Lowest (VL) Full-Speed **USB Transceivers, with Low VIO 3/5-Wire Interface**

Typical Operating Characteristics (continued)

(V_{BUS} = +3.6V, V_L = +2.5V, T_A = +25°C, unless otherwise noted.)

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Bump Configurations

Bump Description

BUMP	NA	ME	FUNCTION
BUINP	MAX14581	MAX14582	FUNCTION
A1	VL	VL	Digital I/O Connections Logic Supply. V _L sets the logic level for the interface signal. A +1.2V to +3.6V supply is connected to V _L . Bypass V _L to GND with a 0.1 μ F ceramic capacitor.
A2	SEO	_	Logic Side Data Input/Output. This pin is an input when \overline{OE} is low and an output when \overline{OE} is high. As an input, SE0 is used to output a single-ended zero (SE0) on D+/D- (when active-high). D+ and D- are both driven low. As an output, SE0 goes active-high when both D+ and D- are low regardless of the status of SUS. (See Tables 3, 4a, and 4b.)
A3	DAT	_	Logic Side Data Input/Output. This pin is an input when \overline{OE} is low and an output when \overline{OE} is high. As an input, DAT acts as the data for the D+ and D- outputs. As an output DAT is the output of the differential receiver on D+/D- (SUS = 0) or the output of the D+ single-ended comparator if SUS = $\overline{OE} = V_L$. (See Tables 3, 4a, and 4b.)
A4	BD		V _{BUS} Detect. This output goes active-high when V _{BUS} is present.
B1	VTRM	Vtrm	Internal Regulator Output. V _{TRM} provides a regulated +3.3V output. Bypass V _{TRM} to GND with a 1µF (min) ceramic capacitor as close as possible to the device. V _{TRM} normally derives power from V _{BUS} . Alternatively, both V _{BUS} and V _{TRM} can be driven directly with the same +3.3V ±10% voltage supply. Note: In this case V _{BUS} and V _{TRM} must be connected to the same supply. V _{TRM} provides power to internal circuitry only. It can also be used to power an external pullup resistor, if the application calls for the internal pullup to be disabled. It should not be used to power external circuitry.
B2	ENUM	ENUM	Enumerate. ENUM controls the connection of the D+ pullup resistor. When ENUM is low, the pullup is disconnected. When ENUM is high, the pullup is connected to D+.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

DUMD	NA	ME	FUNCTION
BUMP	MAX14581	MAX14582	FUNCTION
В3	SUS	SUS	Suspend. When SUS is low, the transceiver operates normally. When SUS is active- high, the transceiver enters a low-power state. The differential receiver on D+/D- is powered down, and RCV outputs low.
B4	ŌĒ	ŌĒ	Output Enable. \overline{OE} controls the USB transmitter outputs (D+, D-) and the interface signals VP/VM or DAT/SE0. When \overline{OE} is high, the interface signals are outputs and D+/D- are inputs. When \overline{OE} is low, the interface signals are inputs and D+/D- are outputs.
C1	V _{BUS}	V _{BUS}	USB Power-Supply Input. V _{BUS} is typically sourced from the USB connector or to the battery for USB inter-chip applications. V _{BUS} should be a supply in the +3.0V to +5.5V range. V _{BUS} provides power to the internal linear regulator. Bypass V _{BUS} to GND with a 1µF ceramic capacitor as close as possible to the device.
C2	D+	D+	USB Input/Output. When \overline{OE} is low, D+ functions as a USB output. When \overline{OE} is high, D+ functions as a USB input. A 1.5k Ω resistor is connected between D+ and V _{TRM} to indicate full-speed (12Mbps) operation when ENUM is high.
C3	D-	D-	USB Input/Output. When \overline{OE} is low, D- functions as a USB output. When \overline{OE} is high, D- functions as a USB input.
C4	GND	GND	Ground
A2	_	VM	Logic Side Data Input/Output. This pin is an input when \overline{OE} is low and an output when \overline{OE} is high. As an input, VM controls the D- output. As an output, VM is the output of the single-ended receiver on D VM is output high when V _{BUS} is not present. (See Tables 5 and 6.)
A3		VP	Logic Side Data Input/Output. This pin is an input when \overline{OE} is low and an output when \overline{OE} is high. As an input, VP controls the D+ output. As an output, VP is the output of the single-ended receiver on D+. VP is output high when V _{BUS} is not present. (See Tables 5 and 6.)
A4	_	RCV	Differential Receiver Output. RCV responds to the differential input on D+ and D (See Table 6.) RCV asserts low if SUS = V_L .

Bump Description (continued)

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Functional Diagrams

Detailed Description

The MAX14581/MAX14582 USB-compliant transceivers are designed to minimize the area and external components required to interface low-voltage ASICs to USB. These devices comply with USB 2.0 specifications for full-speed-only (12Mbps) operation. The transceivers include an internal 3.3V regulator, an internal 1.5k Ω D+ pullup resistor, and built-in ± 15 kV ESD protection circuitry to protect the USB I/O ports (D+, D-). The MAX14581/MAX14582 also have internal series resistors, allowing these devices to be wired directly to a USB connector.

These devices operate with logic-supply voltages as low as +1.2V, ensuring compatibility with low-voltage ASICs.

A low-power disable mode reduces current consumption to less than 13μ A (typ). An enumerate function controls the D+ pullup resistor, allowing devices to logically disconnect while remaining plugged in.

The ICs have 36 Ω (typ) internal resistors on D+/D- for direct connection to the USB connector.

The MAX14581 is equipped with DAT and SE0 interface signals and supports 3-wire USB transceiver interface. Although the 3-wire interface is commonly associated with USB on-the-go transceivers, the MAX14581 supports USB peripherals only. These transceivers provide a USB V_{BUS} detection function that monitors the presence of USB V_{BUS} and signals the event.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Interface

The MAX14581/MAX14582 control signals are used to control the USB D+/D- lines. V_L powers the logic-side interface and sets the input and output thresholds of these signals. The control signals for the MAX14581 are DAT, SEO, and \overline{OE} . The control signals for the MAX14582 are VP, VM, RCV, and \overline{OE} .

Power-Supply Configuration Normal Operating Mode

See Table 1 for various power-supply configurations.

 V_{BUS} supplies power to the USB transceivers. Connect V_{BUS} to a +3.0V to +5.5V supply. Connect V_L to a +1.2V to +3.6V supply. V_{BUS} is typically connected directly to the USB connector. An internal regulator provides 3.3V to internal circuitry, and a regulated 3.3V output at V_{TRM} , in addition to powering the internal D+ pullup resistor. The ICs can be powered by connecting both V_{BUS} and V_{TRM} to the same 3.3V external regulator.

V_{BUS} can also be connected directly to a Li+ battery for inter-chip communications, when the transceiver is used for example as the USB analog front-end (AFE) of the 3G modem, used to communicate with the system-on-chip (SOC).

Operate the transceivers in low-power mode by asserting SUS high. In suspend mode, the USB differential receiver is turned off and V_{BUS} consumes less than 18µA of supply current. The single-ended D+ and D- receivers are still active when driving SUS high.

Sharing Mode

Suspend Mode

Connect V_L to a system power supply and leave V_{BUS} (or V_{BUS} and V_{TRM}) unconnected or connected to GND. D+ and D- are three-stated, allowing other circuitry to share the USB D+ and D- line. V_L consumes less than 1µA of supply current. When operating the transceivers in sharing mode, the SUS and $\overline{\text{OE}}$ inputs are ignored, and the interface signals (SE0, DAT, or RCV) are high impedance.

Disable Mode

Connect V_{BUS} to a system power supply and leave V_L unconnected or connect to ground. In disable mode, D+ and D- are three-stated, and V_{BUS} and/or V_{TRM} (or V_{BUS} and V_{TRM}) consume less than 13µA (typ). When operating the transceivers in disable mode, OE, SUS, and inputs to the interface control signals are according to Table 2a and Table 2b.

V _{BUS} (V)	V _{TRM} (V)	V _L (V)	CONFIGURATION	NOTES
+3.0V to +5.5	+3.0 to +3.6 output	+1.2 to +3.6V	Normal mode	_
+3.0V to +5.5	+3.0 to +3.6 output	GND or unconnected	Disable mode	Tables 2a, 2b
GND or unconnected	High impedance	+1.2 to +3.6V	Sharing mode	Tables 2a, 2b

Table 1. Power-Supply Configuration

Table 2a. Disable Mode and Sharing Mode Connection, 3-Wire Interface

INPUTS/OUTPUTS	DISABLE MODE	SHARING MODE
V _{BUS}	3.0V to 5.5V	Unconnected or connected to GND
VL	Unconnected or connected to GND	1.2V to 3.6V input
D+ and D-	High impedance	High impedance
DAT, SEO	High impedance	5k Ω pullup resistor to VL
SUS	Unconnected or connected to GND	High or low
ŌĒ	Unconnected or connected to GND	High or low
BD	Low	Low

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Table 2b. Disable Mode and Sharing	Mode Connection, 5-Wire Interface
------------------------------------	-----------------------------------

INPUTS/OUTPUTS	DISABLE MODE	SHARING MODE
V _{BUS}	3.0V to 5.5V	Unconnected or connected to GND
VL	Unconnected or connected to GND	1.2V to 3.6V input
D+ and D-	High impedance	High impedance
SUS	Unconnected or connected to GND	High or low
ŌĒ	Unconnected or connected to GND	High or low
VM, VP	High impedance	5k Ω pullup resistor to VL
RCV	Low	Low

3-Wire Interface

The MAX14581 uses DAT and SE0 to drive data or a single-ended zero onto the D+/D- lines. When \overline{OE} is low, SE0 is an input and functions as a single-ended zero driver. When SE0 is high, both D+ and D- are driven low. When SE0 is driven low, the D+/D- outputs are controlled by DAT.

DAT is used to send data on D+/D- when both \overline{OE} and SEO are low. When DAT is high, D+ is driven high and D- is driven low. When DAT is low, D+ is driven low and D- is driven high.

In receive mode (\overline{OE} = high), DAT is the output of the differential receiver connected to D+ and D- if SUS = 0 or the putput of the D+ single-ended comparator if SUS = $\overline{OE} = V_L$. SE0 only goes active-high when both D+ and D- are low.

5-Wire Interface

In USB mode, the MAX14582 implements a full-speed (12Mbps) USB interface on D+ and D-, with enumerate and suspend functions. A differential USB receiver presents the USB state as a logic-level output RCV (Table 6). VP/VM are outputs of single-ended USB receivers when \overline{OE} is high, allowing detection of single-ended zero (SE0) events. When \overline{OE} is low, VP and VM serve as inputs to the USB transmitter. Drive suspend input SUS logic-high to force the MAX14581/MAX14582 into a suspend mode and disable the differential USB receiver (Table 6).

Control Signals USB Detection (MAX14581)

The MAX14581 USB detection function indicates that V_{BUS} is present. The MAX14581 push-pull bus detection output (BD) monitors V_{BUS}, and asserts high when V_{BUS} and V_L are present. BD asserts low if V_{BUS} is less than V_{TH_VBUS} and enters sharing mode.

 $\overline{\text{OE}}$ controls the direction of communication when VL and VBUS are both present.

For the MAX14581 when \overline{OE} is low, DAT and SE0 operate as logic inputs and D+/D - are outputs. When \overline{OE} is high, DAT and SE0 operate as logic outputs and D+/D- are inputs.

For the MAX14582 when \overline{OE} is logic-low, VP and VM operate as logic inputs, and D+/D- are outputs. When \overline{OE} is logic-high, VP and VM operate as logic outputs, and D+/D are inputs. RCV is the output of the differential USB receiver connected to D+/D-, and is not affected by the \overline{OE} logic level.

SUS

SUS determines whether the MAX14581/MAX14582 operate in normal mode or in suspend mode. Drive SUS low for normal operation. Drive SUS high to enable suspend mode. In suspend mode, the single-ended receivers (D+/D-) are active to detect a wake-up event. Supply current decreases to less than 18 μ A (typ) from V_{BUS} in suspend mode.

The devices can transmit data on D+ and D- while in suspend mode. This function is used to signal a remote wake-up event.

ENUM

A 1.5k Ω pullup resistor on D+ is used to indicate fullspeed (12Mbps) operation. Drive ENUM high to connect the internal pullup resistor from D+ to V_{TRM}. Drive ENUM low to disconnect the internal pullup resistor from D+ to V_{TRM}.

D+ and D-

D+ and D- are bidirectional signals and are ESD protected to $\pm 15 kV$ (HBM). \overline{OE} controls the direction of D+ and D- when in USB normal mode.

ŌE

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

VTRM

An internal linear regulator generates the V_{TRM} voltage (+3.3V typ). V_{TRM} derives power from V_{BUS} (see the *Power-Supply Configuration* section). V_{TRM} powers the internal USB circuitry and provides the pullup voltage for the internal 1.5k Ω resistor. Bypass V_{TRM} to GND with a 1µF ceramic capacitor as close as possible to the device. Do not use V_{TRM} to provide power to external circuitry.

RCV (MAX14582)

RCV is the output of the differential USB receiver. RCV is a logic-high for D+ high and D- low. RCV is a logic-low for D+ low and D- high. RCV retains the last valid logic state when D+ and D- are both low (SE0). RCV is driven logic-low when SUS is high. See <u>Table 3</u>, <u>Table 4a</u>, and <u>Table 4b</u>.

 $\label{eq:BD} \begin{array}{c} \textbf{BD} (\textbf{MAX14581}) \\ \text{The } V_{BUS} \text{ detect (BD) output is asserted high when a voltage greater than } V_{TH-BUS} \text{ is presented on } V_{BUS}. This is typically the case when the MAX14581 is connected to a powered USB. BD is low when } V_{BUS} \text{ is unconnected}. \end{array}$

The MAX14582 doesn't have the BD pin. Nevertheless, the status of V_{BUS} is provided by encoding VP and VM as follows: VP = VM = high.

Applications Information

External Capacitors

Use three external capacitors for proper operation. Bypass V_L to GND with a $0.1\mu F$ ceramic capacitor. Bypass V_{BUS} to GND with a $1\mu F$ ceramic capacitor. Bypass V_{TRM} to GND with a $1\mu F$ (min) ceramic or plastic capacitor. Place all capacitors as close as possible to the device.

USB Data Transfer

Transmitting Data, 3 Wires (MAX14581)

The MAX14581 transmit USB data to the USB differentially on D+ and D- when \overline{OE} is low. The D+ and D- outputs are determined by SE0 and DAT (see Table 3).

Receiving Data, 3 Wires (MAX14581)

Drive \overline{OE} high and SUS low to receive data on D+/D-. Differential data received on D+ and D- appears at DAT. SEO goes high only when both D+ and D- are low (Table 4a and Table 4b).

Table 3. Transmit Truth Table, 3 Wires

$(\overline{OE} = 0)$					
INP	UTS	OUTF	PUTS		
DAT	SE0	D+	D-		
0	0	0	1		
0	1	0	0		
1	0	1	0		
1	1	0	0		

Table 4a. Receive Truth Table, 3 Wires, SUS = 0

(OE = 1, SUS = 0)					
INP	INPUTS		IPUTS OUTPUTS		PUTS
D+	D-	DAT	SE0		
0	0	*DAT	1		
0	1	**0	0		
1	0	**1	0		
1	1	Х	0		

*Last state.

**D+/D- differential receiver output.

X = Undefined

Table 4b. Receive Truth Table, 3 Wires, SUS = 1

(OE = 1, SUS = 1)			
INP	INPUTS		PUTS
D+	D-	DAT	SE0
0	0	0	1
0	1	0	0
1	0	*1	0
1	1	*1	0

*D+ single-ended receiver output.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Transmitting Data, 5 Wires

To transmit data to the USB, operate the MAX14582 in USB mode (see the *Power-Supply Configuration* section) and drive OE low. The MAX14582 transmits data to the USB differentially on D+ and D-. VP and VM serve as differential input signals to the driver. When VP and VM are both driven low, a single-ended zero (SE0) is output on D+/D-.

Receiving Data, 5 Wires

To receive data from the USB, operate the MAX14582 in USB mode (see the <u>Power-Supply Configuration</u> section). Drive \overline{OE} high and SUS low. Differential data received at D+/D- appears as a logic signal at RCV. VP and VM are the outputs of single-ended receivers on D+ and D-.

Table 5. Transmit Truth Table, 5 Wires

$(\overline{OE} = 0)$			
INP	INPUTS		PUTS
VP	VM	D+	D-
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

Host Usage

As a host USB transceiver, the MAX14581/MAX14582 require external $15k\Omega$ pulldown resistors and connecting ENUM = low.

ESD Protection

The MAX14581/MAX14582 feature ± 15 kV (HBM) ESD protection on D+ and D-. The ESD structures withstand high ESD in all states: normal operation, suspend, sharing mode, disable mode, and powered down. V_{BUS} (with a 1µF ceramic capacitor) and D+/D- are characterized for protection to the following limits:

• ±15kV using the Human Body Model

Table 6. Receive Truth Table, 5 Wires

(OE = 1)					
INPUTS		OUTPUTS			
D+	D-	VP	VM	RCV (SUS = 0)	RCV (SUS = 1)
0	0	0	0	*RCV	0
0	1	0	1	0	0
1	0	1	0	1	0
1	1	1	1	Х	0

Note: The SE1 condition (D+ = D- = 1) is a forbidden condition in the USB protocol. *Last state.

X = Undefined.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Figure 8. Human Body ESD Test Model

Figure 9. Human Body Model Current Waveform

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

HBM ESD Protection

Figure 8 shows the Human Body Model, and Figure 9 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

USB Inter-Chip Typical Application Circuits

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX14581EWC+T	-40°C to +85°C	12 WLP	ACF
MAX14582EWC+T	-40°C to +85°C	12 WLP	ACD

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
12 WLP	W121A1+1	<u>21-0449</u>	Refer to Application Note 1891

Industry's Smallest and Lowest (V_L) Full-Speed USB Transceivers, with Low VIO 3/5-Wire Interface

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	6/12	Initial release	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 160 Rio Robles, San Jose, CA 95134 1-408-601-1000 _

Maxim is a registered trademark of Maxim Integrated Products, Inc.

21