

### LOW POWER LINEAR AMPLIFIER

RoHS Compliant & Pb-Free Product Package Style: SOIC-8 Slug



### **Features**

- Single 3V to 6V Supply
- 10dBm to 20dBm Ultra Linear Output Power
- 14dB Gain at 2.14GHz
- Power Down Mode
- 800MHz to 2500MHz Operation

### **Applications**

- 2.14 GHz UMTS Systems
- Digital Communication Systems
- PCS Communication Systems
- Commercial and Consumer Systems



Functional Block Diagram

### **Product Description**

The RF5187 is a highly-linear, low-power amplifier IC. It has been designed for use as the driver RF amplifier in applications such as W-CDMA basestations. The RF5187 requires an input and output matching network and power supply feed line. The device is manufactured on an advanced Gallium Arsenide HBT process, and is packaged in a 8-pin plastic package with a backside ground.

#### **Ordering Information**

RF5187Low Power Linear AmplifierRF5187PCBA-41XFully Assembled Evaluation Board

#### **Optimum Technology Matching® Applied**

| 🗹 GaAs HBT  | □ SiGe BiCMOS | GaAs pHEMT | 🗌 GaN HEMT |
|-------------|---------------|------------|------------|
| GaAs MESFET | 🗌 Si BiCMOS   | Si CMOS    |            |
| 🗌 InGaP HBT | SiGe HBT      | 🗌 Si BJT   |            |

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>w</sup>, PowerStar®, POLARIS<sup>w</sup> TOTAL RADIO<sup>w</sup> and UltimateBlue<sup>w</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006. RF Micro Devices. Inc.



#### **Absolute Maximum Ratings**

| 0                                        |              |                 |  |  |
|------------------------------------------|--------------|-----------------|--|--|
| Parameter                                | Rating       | Unit            |  |  |
| Supply Voltage (V <sub>CC</sub> )        | -0.5 to +6.5 | V <sub>DC</sub> |  |  |
| Power Control Voltage (V <sub>PC</sub> ) | -0.5 to +5V  | V               |  |  |
| DC Supply Current                        | 300          | mA              |  |  |
| Input RF Power                           | +20          | dBm             |  |  |
| Output Load VSWR                         | 20:1         |                 |  |  |
| Operating Ambient Temperature            | -40 to +85   | °C              |  |  |
| Storage Temperature                      | -40 to +100  | °C              |  |  |
|                                          |              |                 |  |  |



Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application or circuitry and specifications at any time without prior notice.

| Parameter              |      | Specification |      | Unit | Condition                                                                                       |  |
|------------------------|------|---------------|------|------|-------------------------------------------------------------------------------------------------|--|
| Farameter              | Min. | Тур.          | Max. | Unit | Condition                                                                                       |  |
| Overall                |      |               |      |      | T=25°C, V <sub>CC</sub> =5.0V, I <sub>CC</sub> =240mA,<br>Freq=2140MHz, P <sub>OUT</sub> =13dBm |  |
| Frequency Range        | 800  |               | 2500 | MHz  |                                                                                                 |  |
| Output Power           |      | 13            |      | dBm  |                                                                                                 |  |
| OP1dB                  |      | 29            |      | dBm  |                                                                                                 |  |
| Small Signal Gain      | 13   |               | 15   | dB   |                                                                                                 |  |
| Input VSWR             |      | 1.5:1         |      |      | With external matching network.                                                                 |  |
| Two-Tone Specification |      |               |      |      |                                                                                                 |  |
| Output IP3             | 41   | 43            | 45   | dBm  | 13dBm per tone.                                                                                 |  |
| Power Control          |      |               |      |      |                                                                                                 |  |
| V <sub>PC</sub>        | 2.7  | 3.1           | 3.7  | V    | To obtain 240 mA idle current.                                                                  |  |
| Power Control "OFF"    | 0.2  | 0.5           |      | V    | Threshold voltage at device input.                                                              |  |
| Power Supply           |      |               |      |      |                                                                                                 |  |
| Power Supply Voltage   | 5    |               | 6    | V    |                                                                                                 |  |
| Supply Current         |      |               | 240  | mA   |                                                                                                 |  |
| Power Down Current     |      | 2             | 10   | μΑ   | V <sub>PC</sub> =0.2V                                                                           |  |

Note: For infrastructure class operation, the maximum allowable current over all operating conditions is 260 mA. This implies the need for an external active bias control network to control I<sub>CC</sub> over temperature and normal process variation. A recommended active bias control circuit is included in the datasheet.

The maximum continuous allowable dissipated power ( $I_{CC} * V_{CC} - P_{RF}$ ) for this part is 1.3W. For  $V_{CC} = 5.0V$ , this implies an  $I_{CC}$  limit of 260mA. A  $V_{CC}$  of 6.0V would have an  $I_{CC}$  limit of 215mA.

A constant I<sub>CC</sub> of 180mA to 220mA provides an excellent combination of high linearity and low power dissipation. Refer to W-CDMA ACP curves at bottom of datasheet.



rfmd.com

# RF5187

| Pin         | Function | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interface Schematic |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1           | RF IN    | RF input. This input is DC-coupled, so an external blocking capacitor is required if this pin is connected to a DC path. An optimum match to $50\Omega$ is obtained by providing an external series capacitor of $2.4\text{pF}$ and then a shunt capacitor of $2.4\text{pF}$ . Those values are typical for 2140MHz; other values may be required for other frequencies.                                                                                                                                                                                                                                                                                                                                                       |                     |
| 2           | RF IN    | Same as pin 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 3           | PC       | Power control pin. For obtaining maximum performance, the voltage on this pin can be used to set correct bias level. For low power linear applications, it is recommended that a constant bias control loop be used (see datasheet evaluation board schematic). A voltage of 0.5V or less at $V_{PC}$ brings the part into Power Down State.                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 4           | VCC      | Power supply pin for the bias circuits. External low frequency bypass capac-<br>itors should be connected if no other low frequency decoupling is nearby.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 5           | RF OUT   | RF output and bias for the output stage. The power supply for the output transistor needs to be supplied to this pin. This can be done through a quarter-wavelength microstrip line that is RF-grounded at the other end, or through an RF inductor that supports the required DC currents. Optimum load impedance is achieved by providing a shunt capacitor of 1.8 pF and a series capacitor of 3.3 pF. Those values are typical for 2140 MHz; other values may be required for other frequencies. Since there are several output pins available (which are internally connected), one pin can be used for connecting the bias, another for connecting a (third) harmonic trap filter, and the other pins for the RF output. |                     |
| 6           | RF OUT   | Same as pin 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 7           | RF OUT   | Same as pin 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 8           | RF OUT   | Same as pin 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| Pkg<br>Base | GND      | Ground connection. The backside of the package should be connected to<br>the ground plane through a short path (i.e., vias under the device may be<br>required).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |

### **Package Drawing**







# **Evaluation Board Schematic**

#### **Constant Bias Circuit** 5.0 V $\leq$ R1 R3 To VCC pins through LPF Q2 Q1 To VPC pin through LPF ≶ ≶ R2 R4 Ī

| Bias Point | R1  | R2   | R3  | R4  |
|------------|-----|------|-----|-----|
| mA         | Ω   | Ω    | Ω   | Ω   |
| 100        | 120 | 1200 | 3.6 | 820 |
| 120        | 120 | 1200 | 3.0 | 820 |
| 150        | 120 | 1200 | 2.5 | 820 |
| 180        | 120 | 1200 | 2.0 | 820 |
| 200        | 120 | 1200 | 1.8 | 820 |
| 220        | 120 | 1200 | 1.7 | 820 |
| 240        | 120 | 1200 | 1.6 | 820 |





### **Evaluation Board Layout**

Board Size 1.5" x 1.0"

Board Thickness 0.031", Board Material FR-4





| · · |   | ••     |   |   |
|-----|---|--------|---|---|
|     |   |        |   |   |
|     |   |        |   |   |
| • • |   | ••     |   |   |
| l.  |   |        | • | • |
|     |   |        |   |   |
|     |   |        |   |   |
|     |   | •• ••• |   |   |
|     |   | •••••  |   |   |
|     | • |        |   |   |
|     |   |        |   |   |
|     |   |        |   |   |
|     |   |        |   |   |









### **RoHS\* Banned Material Content**

| RoHS Compliant:                    | Yes   |
|------------------------------------|-------|
| Package total weight in grams (g): | 0.091 |
| Compliance Date Code:              | 0523  |
| Bill of Materials Revision:        | -     |
| Pb Free Category:                  | e3    |

| Bill of Materials | Parts Per Million (PPM) |    |    |       |     |      |
|-------------------|-------------------------|----|----|-------|-----|------|
|                   | Pb                      | Cd | Hg | Cr VI | PBB | PBDE |
| Die               | 0                       | 0  | 0  | 0     | 0   | 0    |
| Molding Compound  | 0                       | 0  | 0  | 0     | 0   | 0    |
| Lead Frame        | 0                       | 0  | 0  | 0     | 0   | 0    |
| Die Attach Epoxy  | 0                       | 0  | 0  | 0     | 0   | 0    |
| Wire              | 0                       | 0  | 0  | 0     | 0   | 0    |
| Solder Plating    | 0                       | 0  | 0  | 0     | 0   | 0    |

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted above.

\* DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

