N-Channel Power MOSFET 600 V, 900 m Ω #### **Features** - 100% Avalanche Tested - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS # ABSOLUTE MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Pai | Symbol | Value | Unit | | | |---|------------------------|------------------------|--------------------------------------|----------------|------| | Drain-to-Source Voltage | | | V_{DSS} | 600 | V | | Gate-to-Source Vo | Gate-to-Source Voltage | | | ±25 | V | | Continuous Drain | Steady
State | T _C = 25°C | I _D | 5.7 | Α | | Current R _{θJC} | State | T _C = 100°C | | 3.6 | | | Power Dissipation - R _{0JC} | Steady
State | T _C = 25°C | P _D | 74 | W | | Pulsed Drain
Current | t _p | = 10 μs | I _{DM} | 20 | Α | | Operating Junction and Storage
Temperature | | | T _J ,
T _{STG} | -55 to
+150 | °C | | Source Current (Body Diode) | | | Is | 5.7 | Α | | Single Pulse Drain-to-Source Avalanche
Energy (I _D = 2 A) | | | EAS | 33 | mJ | | Peak Diode Recovery (Note 1) | | | dv/dt | 15 | V/ns | | Lead Temperature for Soldering Leads | | | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. $I_{SD} < 5.7$ A, di/dt \leq 400 A/ μ s, $V_{peak} < V_{(BR)DSS}$ ### THERMAL RESISTANCE | Parameter | Symbol | Value | Unit | |--|----------------|----------------|------| | Junction-to-Case (Drain) NDD60N900U1 | $R_{ heta JC}$ | 1.7 | °C/W | | Junction-to-Ambient Steady State (Note 3) NDD60N900U1 (Note 2) NDD60N900U1-1 (Note 2) NDD60N900U1-35 | $R_{ hetaJA}$ | 47
99
95 | °C/W | - 2. Insertion mounted - 3. Surface mounted on FR4 board using 1" sq. pad size (Cu area = 1.127 in sq [2 oz] including traces) # ON Semiconductor® ### http://onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | | | |----------------------|-------------------------|--|--| | 600 V | 900 mΩ @ 10 V | | | #### **N-Channel MOSFET** #### ORDERING INFORMATION See detailed ordering and shipping information on page 3 of this data sheet. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise noted) | Characteristic | Symbol | Test Conditions | | Min | Тур | Max | Unit | |--|--------------------------------------|--|------------------------|-----|------|------|-------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | V _{GS} = 0 V, I _D = 1 r | mA | 600 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} /T _J | | | | 550 | | mV/°C | | Drain-to-Source Leakage Current | I _{DSS} | V _{DS} = 600 V, V _{GS} = 0 V | T _J = 25°C | | | 1 | μΑ | | | | | T _J = 125°C | | | 100 | 1 | | Gate-to-Source Leakage Current | I _{GSS} | V _{GS} = ±20 V | • | | | ±100 | nA | | ON CHARACTERISTICS (Note 4) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{DS} = V_{GS}, I_{D} = 250$ | Ο μΑ | 2 | 3.2 | 4 | V | | Negative Threshold Temperature Coefficient | V _{GS(TH)} /T _J | Reference to 25°C, I _D = | : 250 μA | | 7.2 | | mV/°C | | Static Drain-to-Source On Resistance | R _{DS(on)} | V _{GS} = 10 V, I _D = 2. | 5 A | | 820 | 900 | mΩ | | Forward Transconductance | 9FS | V _{DS} = 15 V, I _D = 2. | 5 A | | 4.3 | | S | | DYNAMIC CHARACTERISTICS | | | | | | | | | Input Capacitance | C _{iss} | | | | 360 | | pF | | Output Capacitance | C _{oss} | $V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, f$ | = 1 MHz | | 23 | | 1 | | Reverse Transfer Capacitance | C _{rss} | 33 | | | 1.1 | | 1 | | Effective output capacitance, energy related (Note 6) | C _{o(er)} | V _{GS} = 0 V, V _{DS} = 0 to 480 V | | | 17 | |] | | Effective output capacitance, time related (Note 7) | C _{o(tr)} | I_D = constant, V_{GS} = 0 V,
V_{DS} = 0 to 480 V | | | 57 | |] | | Total Gate Charge | Q_{g} | | | | 12 | | nC | | Gate-to-Source Charge | Q_{gs} | | | | 2.5 | | 1 | | Gate-to-Drain ("Miller") Charge | Q _{gd} | $V_{DS} = 300 \text{ V}, I_D = 5.9 \text{ A}, V_{DS} = 5.9 \text{ A}$ | _{GS} = 10 V | | 5.8 | | 1 | | Plateau Voltage | V_{GP} | | | | 5.4 | | V | | Gate Resistance | R_{g} | | | | 5 | | Ω | | RESISTIVE SWITCHING CHARACTER | ISTICS (Note 5) |) | | | | • | | | Turn-on Delay Time | t _{d(on)} | | | | 7 | | ns | | Rise Time | t _r | V _{DD} = 300 V, I _D = 5. | 9 A. | | 9 | | 1 | | Turn-off Delay Time | t _{d(off)} | $V_{GS} = 10 \text{ V}, R_G = 0$ | ο Ω΄ | | 17 | | 1 | | Fall Time | t _f | | | | 6 | | 1 | | SOURCE-DRAIN DIODE CHARACTEF | RISTICS | | • | | - | • | | | Diode Forward Voltage | V_{SD} | $I_S = 5.7 \text{ A}, V_{GS} = 0 \text{ V}$ $T_J = 25^{\circ}\text{C}$ $T_J = 100^{\circ}\text{C}$ | | | 0.88 | 1.3 | V | | | | | | | 0.80 | | 1 | | Reverse Recovery Time | t _{rr} | $V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}$ $I_{S} = 5.9 \text{ A}, d_{i}/d_{t} = 100 \text{ A}/\mu\text{s}$ | | | 270 | | ns | | Charge Time | ta | | | | 130 | | 1 | | Discharge Time | t _b | | | | 140 | | 1 | | Reverse Recovery Charge | Q_{rr} | | | | 1.8 | | μС | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$. 5. Switching characteristics are independent of operating junction temperatures. 6. $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$ 7. $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% $V_{(BR)DSS}$ # **MARKING DIAGRAMS** Y = Year WW = Work Week G = Pb-Free Package DPAK ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|---------------------------------|-----------------------| | NDD60N900U1-1G | IPAK
(Pb-Free, Halogen-Free) | 75 Units / Rail | | NDD60N900U1-35G | IPAK
(Pb-Free, Halogen-Free) | 75 Units / Rail | | NDD60N900U1T4G | DPAK
(Pb-Free, Halogen-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ## **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Breakdown Voltage Variation with Temperature ## **TYPICAL CHARACTERISTICS** Figure 7. Threshold Voltage Variation with Temperature Figure 8. Drain-to-Source Leakage Current vs. Voltage Figure 9. Capacitance Variation Figure 10. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 11. Resistive Switching Time Variation vs. Gate Resistance Figure 12. Diode Forward Voltage vs. Current # **TYPICAL CHARACTERISTICS** Figure 13. Maximum Rated Forward Biased **Safe Operating Area** Figure 14. Thermal Impedance (Junction-to-Case) ### **PACKAGE DIMENSIONS** **IPAK** CASE 369D-01 ISSUE C - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIN | IETERS | |-----|-----------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.235 | 0.245 | 5.97 | 6.35 | | В | 0.250 | 0.265 | 6.35 | 6.73 | | С | 0.086 | 0.094 | 2.19 | 2.38 | | D | 0.027 | 0.035 | 0.69 | 0.88 | | Е | 0.018 | 0.023 | 0.46 | 0.58 | | F | 0.037 | 0.045 | 0.94 | 1.14 | | G | 0.090 BSC | | 2.29 BSC | | | Н | 0.034 | 0.040 | 0.87 | 1.01 | | J | 0.018 | 0.023 | 0.46 | 0.58 | | Κ | 0.350 | 0.380 | 8.89 | 9.65 | | R | 0.180 | 0.215 | 4.45 | 5.45 | | S | 0.025 | 0.040 | 0.63 | 1.01 | | ٧ | 0.035 | 0.050 | 0.89 | 1.27 | | Z | 0.155 | | 3.93 | | # STYLE 2: PIN 1. GATE 2. DRAIN - 3. SOURCE - 4. DRAIN # 3.5 MM IPAK, STRAIGHT LEAD CASE 369AD **ISSUE B** - NOTES: 1.. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN | MAX | | | | Α | 2.19 | 2.38 | | | | A1 | 0.46 | 0.60 | | | | A2 | 0.87 | 1.10 | | | | b | 0.69 | 0.89 | | | | b1 | 0.77 | 1.10 | | | | D | 5.97 | 6.22 | | | | D2 | 4.80 | | | | | E | 6.35 | 6.73 | | | | E2 | 4.57 | 5.45 | | | | E3 | 4.45 | 5.46 | | | | е | 2.28 BSC | | | | | L | 3.40 | 3.60 | | | | L1 | - | 2.10 | | | | L2 | 0.89 | 1.27 | | | STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE CONSTRUCTION #### PACKAGE DIMENSIONS # **DPAK (SINGLE GAUGE)** CASE 369C ISSUE D #### **SOLDERING FOOTPRINT*** Mounting Techniques Reference Manual, SOLDERRM/D. #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994 - 2. CONTROLLING DIMENSION: INCHES. - 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z. - 4. DIMENSIONS DAND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. - DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. - 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. | | INCHES | | MILLIMETERS | | | |-----|-----------|-------|-------------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.086 | 0.094 | 2.18 | 2.38 | | | A1 | 0.000 | 0.005 | 0.00 | 0.13 | | | b | 0.025 | 0.035 | 0.63 | 0.89 | | | b2 | 0.030 | 0.045 | 0.76 | 1.14 | | | b3 | 0.180 | 0.215 | 4.57 | 5.46 | | | С | 0.018 | 0.024 | 0.46 | 0.61 | | | c2 | 0.018 | 0.024 | 0.46 | 0.61 | | | D | 0.235 | 0.245 | 5.97 | 6.22 | | | Е | 0.250 | 0.265 | 6.35 | 6.73 | | | е | 0.090 | BSC | 2.29 BSC | | | | Н | 0.370 | 0.410 | 9.40 | 10.41 | | | L | 0.055 | 0.070 | 1.40 | 1.78 | | | L1 | 0.108 REF | | 2.74 REF | | | | L2 | 0.020 BSC | | 0.51 BSC | | | | L3 | 0.035 | 0.050 | 0.89 | 1.27 | | | L4 | | 0.040 | | 1.01 | | | Z | 0.155 | | 3.93 | | | STYLE 2: - PIN 1. GATE 2. DRAIN 3. SOURCE - 4. DRAIN *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, tadefined to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative