

## **MS2473**

### 600 Watts, 50 Volts, Pulsed Avionics 1090 MHz

#### **GENERAL DESCRIPTION**

The MS2473 is a high power COMMON BASE bipolar transistor. It is designed for pulsed systems in the 1090MHz frequency band. The device has gold thin-film metallization for proven highest MTTF. Low thermal resistance packaging reduces the junction temperature and extends device lifetime.

#### ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C<sup>2</sup> 2300 Watts

**Maximum Voltage and Current** 

BVcboCollector to Base Voltage65 VoltsBVeboEmitter to Base Voltage3.5 VoltsIcCollector Current46 Amps

**Maximum Temperatures** 

Storage Temperature  $-65 \text{ to} + 150^{\circ}\text{C}$ Operating Junction Temperature  $+200^{\circ}\text{C}$ 

# CASE OUTLINE M112



.400 x .500 2LFL (M112) hermetically sealed

## ELECTRICAL CHARACTERISTICS @ 25 °C

| SYMBOL                                      | CHARACTERISTICS                                                                | TEST CONDITIONS                                                           | MIN                    | TYP | MAX | UNITS                           |
|---------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------|-----|-----|---------------------------------|
| Pout<br>Pin<br>Pg<br>¶c<br>RL <sub>IN</sub> | Power Out Power Input = 150W Power Gain Collector Efficiency Input Return Loss | F = 1090 MHz<br>Vcc = 50 Volts<br>PW = 10 μsec<br>DF = 1%<br>F = 1090 MHz | 600<br>6.0<br>35<br>10 | 150 |     | Watts<br>Watts<br>dB<br>%<br>dB |

| BVebo<br>BVcbo  | Emitter to Base Breakdown<br>Collector to Base Breakdown | Ie = 10 mA<br>Ic = 25 mA | 3.5<br>65 |      |     | Volts<br>Volts |
|-----------------|----------------------------------------------------------|--------------------------|-----------|------|-----|----------------|
| Ices            | Collector to Emitter Leakage                             | Vce = 50V                |           |      | 35  | mA             |
| h <sub>FE</sub> | DC - Current Gain                                        | Vce = 5V, Ic = 1A        | 5         |      | 200 |                |
| $\Theta jc^2$   | Thermal Resistance                                       |                          |           | 0.06 |     | C/W            |

Note 1: At rated output power and pulse conditions

2: At rated pulse conditions

Initial, January 2007

Microsemi – PPG reserves the right to change, without notice, the specifications and information contained herein. Visit our web site at <a href="https://www.microsemi.com">www.microsemi.com</a> or contact our factory direct.





Microsemi – PPG reserves the right to change, without notice, the specifications and information contained herein. Visit our web site at <a href="https://www.microsemi.com">www.microsemi.com</a> or contact our factory direct.