

Preliminary Technical Information

High-Gain IGBT w/ Diode

IXGP24N60C4D1

High-Speed PT Trench IGBT

Symbol	Test Conditions	Maximum Ra	atings
V _{CES}	T _J = 25°C to 150°C	600	V
V _{CGR}	$T_J^{\circ} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GE} = 1\text{M}\Omega$	600	V
V _{GES}	Continuous	±20	V
V _{GEM}	Transient	±30	V
I _{C25}	T _C = 25°C	56	A
I _{C110}	$T_c = 110^{\circ}C$	24	Α
I _{F110}	$T_{c} = 110^{\circ}C$	30	Α
I _{CM}	$T_{c} = 25^{\circ}C$, 1ms	130	Α
SSOA	$V_{GE} = 15V, T_{VJ} = 125^{\circ}C, R_{G} = 10\Omega$	I _{CM} = 48	А
(RBSOA)	Clamped Inductive Load	$@ \leq V_{CES}$	
P _c	$T_{c} = 25^{\circ}C$	190	W
T _J		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque	1.13/10	Nm/lb.in.
Weight		3	g

		cteristic Values Typ. Max.			
V _{GE(th)}	$I_{\rm C} = 250 \mu A, V_{\rm CE} = V_{\rm GE}$	4.0		6.5	V
I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$			10	μΑ
	$T_{_{\mathrm{J}}} = 125^{\circ}\mathrm{C}$			1.5	mΑ
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = I_{C110}, V_{GE} = 15V, \text{ Note 1}$ $T_{J} = 125^{\circ}\text{C}$		2.10 1.95	2.70	V

 $egin{array}{lll} V_{\text{CES}} & = & 600V \\ I_{\text{C110}} & = & 24A \\ V_{\text{CE(sat)}} & \leq & 2.70V \\ t_{\text{fi(typ)}} & = & 44ns \\ \end{array}$

TO-220

G = Gate C = Collector E = Emitter Tab = Collector

Features

- Optimized for Low Switching Losses
- Square RBSOA
- Anti-Parallel Ultra Fast Diode
- International Standard Package

Advantages

- High Power Density
- Low Gate Drive Requirement

Applications

- Power Inverters
- UPS
- Motor Drives
- SMPS
- PFC Circuits
- Battery Chargers
- Welding Machines
- Lamp Ballasts

Symbol Test Conditions			Characteristic Values			
$(T_{J} = 2)$	25°C U	nless Otherwise Specified)	Min.	Тур.	Max.	
\mathbf{g}_{fs}		$I_{\rm C} = I_{\rm C110}, V_{\rm CE} = 10V, \text{ Note 1}$	10	17	S	
C _{ies})			875	pF	
C _{oes}	}	$V_{CE} = 25V$, $V_{GE} = 0V$, $f = 1MHz$		62	pF	
\mathbf{C}_{res}	J			28	pF	
Q)			64	nC	
\mathbf{Q}_{ge}	}	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15 \rm V, V_{\rm CE} = 0.5 \bullet \rm V_{\rm CES}$		7	nC	
\mathbf{Q}_{gc}	J			28	nC	
t _{d(on)}	7			22	ns	
t _{ri}		Inductive Load, T _J = 25°C		43	ns	
E _{on}	Ţ	$I_C = I_{C110}, V_{GE} = 15V$		0.35	mJ	
$\mathbf{t}_{d(off)}$	($V_{CE} = 360V$, $R_{G} = 10\Omega$		192	ns	
t _{ri}		Note 2		44	ns	
E _{off}				0.34	0.60 mJ	
$\mathbf{t}_{d(on)}$)			20	ns	
t _{ri}		Inductive Load, T _J = 125°C		32	ns	
E _{on}	\	$I_{\rm C} = I_{\rm C110}, V_{\rm GE} = 15V$		0.37	mJ	
$\mathbf{t}_{d(off)}$		$V_{CE} = 360V$, $R_{G} = 10\Omega$		148	ns	
t _{fi}		Note 2		115	ns	
E _{off})			0.52	mJ	
R _{thJC}					0.65 °C/W	
R _{thCS}				0.21	°C/W	

Reverse Diode (FRED)

Symbo	ol Test Conditions Char	Characteristic Values		
$(T_J = 2)$	5°C, Unless Otherwise Specified) Min.	Тур.	Max.	
V _F	$I_F = 10A$, $V_{GE} = 0V$, Note 1		3.0	V
I _{RM}	$I_{F} = 12A, V_{GE} = 0V,$	2.5		Α
t _{rr}	\int -di _F /dt = 100A/µs, V _R = 100V, T _J = 125°C	110		ns
t _{rr}	$I_F = 1A$, $V_{GE} = 0V$, $-di_F/dt = 100A/\mu s$, $V_R = 30V$	30		ns
R _{thJC}			2.5	°C/W

Notes:

- 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.
- 2. Switching times & energy losses may increase for higher V_{CE} (clamp), T_J or R_g .

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.