

AS1122 12-Channel LED Driver with Dot Correction and Greyscale PWM

General Description

The AS1122 is a 12-channel, constant current-sink LED driver. Each of the 12 channels can be individually adjusted by 4096-step greyscale PWM brightness control and 64-step constant-current sink (dot correction).

The dot correction circuitry adjusts the brightness variations between the AS1122 channels and other LED drivers. Greyscale control and dot correction circuitry are accessible via a simple SPI-compatible serial interface.

The open LED detection function indicates a broken or disconnected LED at one or more of the outputs. The overtemperature flag indicates that the device is in an overtemperature condition.

A single external resistor sets the maximum current value of all 12 channels.

The AS1122 is available in a 24-pin QFN 4×4 mm package.

Ordering Information and Content Guide appear at end of datasheet.

Key Benefits & Features

The benefits and features of the AS1122, 12-Channel LED Driver with Dot Correction and Greyscale PWM, are listed below:

Figure 1: Added Value of Using AS1122

Benefits	Features
High resolution LED brightness control	12-bit (4096 steps) Greyscale PWM Control
Independent fine tuning of LED current of each channel to adjust brightness deviation	6-bit (64 steps) Dot Correction
Suitable for high-power LEDs	Drive capability up to 40mA
Multiple white LEDs in series per channel	LED Power Supply up to 30V
Inrush current control	Delayed enabling of each output channel

Applications

The device is ideal for mono-color, multi-color, and full-color LED displays, LED signboards, and display backlights.

Block Diagram

The functional blocks of this device for reference are shown below:

Figure 2: Functional Blocks of AS1122

Pin Assignments

Figure 3: Pin Assignments (Top View)

Figure 4: Pin Descriptions

Pin Number	Pin Name	Description
1	SDI	Serial Data Input
2	CLKI	Serial Data Clock Input
5	CLKO	Serial Data Clock Output
6	SDO	Serial Data Output
7:12, 19:24	OUT0: OUT11	Constant-Current Outputs 0:11
13	VDD	Power Supply Voltage
14	IRQ	Interrupt Request Output: Open drain pin, can be left open if not used.
15	RST	Reset Input: Pull this pin to high to reset all registers (set to default values) and to put the device into shutdown. Connect this pin to GND for normal operation.

Pin Number	Pin Name	Description			
16	IREF	Reference Current Terminal: A resistor connected to this pin sets the maximum output currents.			
18	GND	Ground			
3,4,17	NC	Not Connected: Connect to GND if not used.			
25	Exp Pad	Ground: This pin must be connected to GND to ensure normal operation.			

Absolute Maximum Ratings

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5: Absolute Maximum Ratings

Symbol	Parameter Min Max				Comments						
Electrical Parameters											
	VCC to GND	-0.3	5	V							
	All other pins to GND	-0.3	V _{DD} + 0.3	V							
	VOUT0: VOUT11 to GND	-0.3	30	V							
	Output Current		50	mA							
	Input Current (latch-up immunity)	-100	100	mA	Norm: JEDEC JESD78D Nov 2011						
	ľ	Electrosta	tic Discharg	e							
ESD _{HBM}	Electrostatic Discharge HBM	:	±2	kV	Norm: JEDEC JESD22-A114F						
	Temperatur	e Ranges	and Storage	e Conditi	ons						
T _{AMB}	Operating Temperature Range	-40	85	°C							
Тј	Operating Junction Temperature	-40	125	°C							
R _{THJA}	Junction to Ambient Thermal Resistance		37	°C/W							
Tj	Junction Temperature		150	°C							
T _{STRG}	Storage Temperature Range	-55	150	°C							
T _{BODY}	Package Body Temperature		260	°C	Norm IPC/JEDEC J-STD-020 ⁽¹⁾						
RH _{NC}	Humidity non-condensing	5	85	%							
MSL	Moisture Sensitivity Level		3		Represents a max. floor life time of 168h						

Note(s) and/or Footnote(s):

1. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 "Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices". The lead finish for Pb-free leaded packages is "Matte Tin" (100% Sn)

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

Figure 6:

Electrical Characteristics of AS1122

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		Input Supply				
V_{DD}	Supply Voltage		2.7		3.6	V
I	Constant Constant	All outputs ON, $R_{IREF} = 1k\Omega$		9.5	12	
I _{CC}	Supply Current	All outputs ON, $R_{IREF} = 10k\Omega$		4	6	mA
I _{PD}	Power Down	RST = High, T _{AMB} = 25°C		40		nA
		Output	1			L
R _{IREF}	Reference Current Resistor		1		10	kΩ
V _{OUT}	Output Voltage	OUT0:OUT11			30	V
I _{COC}	Constant Output Current ⁽¹⁾	All outputs ON, $V_{OUT} = 1V$, $R_{IREF} = 10k\Omega$	38			
	Constant Output Current Error De cur Vo De cur	$V_{OUT} = 1V, R_{IREF} = 1k\Omega,$ OUT0:OUT11		±0.8	2	
		$V_{OUT} = 1V, R_{IREF} = 10k\Omega,$ OUT0:OUT11		±1.5	4	
Δl _{COC}		Device to device, average current from OUT0:OUT11, $V_{OUT} = 1V$, $R_{IREF} = 1k\Omega$		±0.5		%
		Device to device, average current from OUT0:OUT11, $V_{OUT} = 1V$, $R_{IREF} = 10k\Omega$		±0.6		•
I _{LEAK}	Leakage Output Current	All outputs OFF, $V_{OUT} = 30V$, $R_{IREF} = 1k\Omega$, OUT0:OUT11		20		nA
Al	Line Pegulation	$V_{OUT} = 1V, R_{IREF} = 1k\Omega$ OUT0:OUT11		±0.1	±1.5	%/V
ΔI_{LNR}	Line Regulation	$V_{OUT} = 1V, R_{IREF} = 10k\Omega$ OUT0:OUT11		±0.2	±1.5	70/ V
ΔI_{LDR}	Load Regulation	$V_{OUT} = 1V \text{ to } 4V, R_{IREF} = 1k\Omega,$ OUT0:OUT11		±0.1	±0.4	%/mA
₩LDR	Load Regulation	$V_{OUT} = 1V \text{ to } 4V, R_{IREF} = 10k\Omega,$ OUT0:OUT11		±0.01	±0.4	/0/111/

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{IH}	High-Level Input		0.8× V _{DD}		V _{DD}	V
V _{IL}	Low-Level Input		GND		0.2 × V _{DD}	V
V _{OH}	High-Level Output	I _{OH} = -1mA, SDO, CLKO	V _{DD} - 0.5			V
V _{OL}	Low-Level Output	I _{OL} = 1mA, SDO, CLKO			0.5	V
VOL	Low-Level Output	I _{OL} = 3mA, IRQ			0.5	V
V _{LOD}	Open Detection Threshold			0.3	0.4	V
V _{IREF}	Reference Voltage	$R_{IREF} = 1k\Omega$	1.24	1.27	1.30	V

Electrical Characteristics: VDD = +2.7V to +3.6V, Typical values are at $T_{AMB} = 25$ °C, VDD = 3.3V (unless otherwise specified).

Note(s) and/or Footnote(s):

1. $I_{coc} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \times 100$

Typical Operating Characteristics

Figure 7:

Constant Output Current vs. Output Voltage

Constant Output Current vs. Output Voltage: These graphs are showing the behavior of different Constant Output Current settings versus the Output Voltage. $V_{DD} = 3.0V$, $T_{AMB} = 25^{\circ}C$

Figure 8:

Constant Output Current vs. Output Voltage (cont.)

Constant Output Current vs. Output Voltage: These graphs are showing the behavior of the 40mA Constant Output Current settings versus the Output Voltage over temperature. $V_{DD} = 3.0V$, $R_{IREF} = 1k\Omega$

Figure 9: Constant Output Current vs. Supply Voltage

Constant Output Current vs. Supply Voltage: These graphs are showing the behavior of the Constant Output Current versus the Supply Voltage over temperature.

 $V_{OUT} = 1.0V$, $R_{IREF} = 1k\Omega$ (left graph, $I_{COC} = 40$ mA), $R_{IREF} = 10k\Omega$ (right graph, $I_{COC} = 4$ mA)

Figure 10: Constant Output Current vs. Temperature

Constant Output Current vs. Temperature: These graphs are showing the behavior of the Constant Output Current versus the Temperature for different Supply Voltages.

 $V_{OUT} = 1.0V$, $R_{IREF} = 1k\Omega$ (left graph, $I_{COC} = 40$ mA), $R_{IREF} = 10k\Omega$ (right graph, $I_{COC} = 4$ mA)

Figure 11: Constant Output Current vs. PWM

Constant Output Current vs. PWM: These graphs are showing the behavior of the Constant Output Current versus the PWM bit setting.

 $V_{OUT} = 1.0V$, $R_{IREF} = 1k\Omega$, $V_{DD} = 3.0V$, $T_{AMB} = 25^{\circ}C$

Figure 12: Constant Output Current Error vs. Output Voltage

Constant Output Current Error vs. PWM: These graphs are showing the Error of the Constant Output Current versus the Output Voltage over temperature.

 V_{DD} = 3.0V, R_{IREF} = 1k Ω (left graph, I_{COC} = 40mA), R_{IREF} = 10k Ω (right graph, I_{COC} = 4mA)

Figure 13: Constant Output Current Error vs. Temperature

Constant Output Current Error vs. Temperature: These graphs are showing the Error of the Constant Output Current versus temperature for different Supply Voltages.

 $V_{OUT} = 1.0V$, $R_{IREF} = 1k\Omega$ (left graph, ICOC = 40mA), $R_{IREF} = 10k\Omega$ (right graph, ICOC = 4mA)

Figure 14: Supply Current vs. Temperature

Supply Current vs. Temperature: These graphs are showing the Supply Current versus Temperature for different Supply Voltages.

 $V_{OUT} = 1.0V$, $R_{IREF} = 1k\Omega$ (left graph, ICOC = 40mA), $R_{IREF} = 10k\Omega$ (right graph, ICOC = 4mA)

Constant Output Current vs.

Reference Current Resistor: This graph is showing the Constant Output Current versus Reference Current Resistor. $V_{OUT} = 1.0V, V_{DD} = 3.0V, T_{AMB} = 25^{\circ}C$

Figure 16: Constant Output Current vs. Dot Correction

Constant Output Current vs. Dot Correction: This graph is showing the Constant Output Current versus Dot Correction.

$$\begin{split} V_{OUT} &= 1.0V, \, V_{DD} = 3.0V, \, T_{AMB} = 25^{\circ}C, \\ R_{IREF} &= 1k\Omega \end{split}$$

Figure 17: LED Open Detection Threshold vs. Temperature

LED Open Detection Threshold vs.

Temperature: This graph is showing the LED Open Detection Threshold versus Temperature for different Supply Voltages.

Figure 18: Constant Output Current Matching vs. Dot Correction

Constant Output Current Matching vs. Dot Correction: This graph is showing the Matching of the Constant Output Current versus Dot Correction. $V_{OUT} = 1.0V, V_{DD} = 3.0V, T_{AMB} = 25^{\circ}C,$ $R_{IRFF} = 1k\Omega$

Detailed Description

Timing Characteristics

Figure 19: Output Timing Characteristics

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{R_OUT}	Rise Time OUT ⁽¹⁾			20		ns
t _{F_OUT}	Fall Time OUT ⁽¹⁾			20		ns
t _D ⁽²⁾	Average Output Delay Time			25		ns

Timing Characteristics: $V_{DD} = 2.7V$ to 3.6V, $T_{AMB} = -40^{\circ}C$ to 85°C. Typical values are at $T_{AMB} = 25^{\circ}C$, $V_{DD} = 3.3V$ (unless otherwise specified).

Note(s) and/or Footnote(s):

- 1. Value can be factory trimmed for EMI improvement.
- 2. Can be turned OFF on request.

Figure 20: Serial Interface Timing Characteristics

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
f _{OSC}	Oscillator Frequency		8	10	12	MHz
f _{CLK}	Data Shift Clock Frequency		1		5	MHz
t _{LOW}	CLK low time during data shift				1	μs
t _{CAPT}	CLK low time for data capture		1.5	1.8	2.85	μs
t _{SETUP}	Setup Time	SDI, CLKI	12			ns
t _{HOLD}	Hold Time	SDI, CLKI	12			ns
t _{PD_rising}	Delay CLKI to CLKO ⁽¹⁾	rising CLKI to rising CLKO	2	3.5	8	ns
t _{PD_falling}	ng Delay CLKI to CLKO ⁽¹⁾ rising CLKI to falling C		72	103.5	138	ns
t _{PD_SDO}	Delay CLKO to SDO ⁽¹⁾	CLKO to SDO ⁽¹⁾ falling edge CLKO		1.5	3	ns
t _{H_CLKO}	High Time of CLKO ⁽¹⁾		70	100	130	ns

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
t _{R_CLK}	Rise Time CLK ⁽¹⁾	$C_{LOAD} = 20 pF$			10	ns
t _{R_DATA}	Rise Time Data ⁽¹⁾	C _{LOAD} = 20pF			10	ns

Timing Characteristics: $V_{DD} = 2.7V$ to 3.6V, $T_{AMB} = -40^{\circ}C$ to 85°C. Typical values are at $T_{AMB} = 25^{\circ}C$, $V_{DD} = 3.3V$ (unless otherwise specified).

Note(s) and/or Footnote(s):

1. Guaranteed by design and not production tested.

Timing Diagrams

Serial Interface

The AS1122 features a 4-pin (CLKI, CLKO, SDI, and SDO) serial interface, which can be connected to microcontrollers or digital signal processors.

The rising edge of the CLKI signal shifts data from pin SDI to the internal register. After all data are clocked in, the serial data are latched into the internal registers at the rising edge of the internal LD signal. The internal LD signal is triggered after the clk is low for a time t_{CAPT} and all Data are clocked in.

With the first 8 clk-cycles an 8 bit identifier needs to be send to the device to distinguish between Status Information, Dot Correction, PWM or command data.

After the internal LD signal the internal counter is set to 0 again and the data are latched into the register according to the prior identifier. If the LD triggers and the counter has no valid value (80 bit for Dot-Correction, 152 bit for PWM data or 16 bit for command data), the counter is set to 0 but the data will be ignored.

With the falling edge of the CLKO the data is shifted to SDO.

Figure 22: PWM Cycle Timing Diagram

Register Access

Before data are accepted by the AS1122, an identifier needs to be sent in advance. Only 3 defined identifiers will be recognized, all other bit combinations will be ignored.

Identifier	Bit Data Section							Description		
identiller	7	6	5	4	3 ⁽¹⁾	2	1	0	Length	Description
Dot Correction	1	1	0	0	1/0	0	0	1	72 bits	Dot Correction Register
PWM	1	1	0	0	1/0	0	1	0	144 bits	PWM Register
Command	1	1	0	0	1/0	1	0	0	8 bits	Command Register

Figure 23: Identifier

Note(s) and/or Footnote(s):

1. Bit3 of the identifier is a global ON/OFF bit. When bit3 of any identifier is set to logic '0' and the OEN bit of the command register is '0' (per default), the output channels are immediately turned ON.

The identifier maps the input register to the identified register and all data on pin SDI will be clocked into this register. This selection is valid as long as no internal LD signal is triggered. When data is latched into the device the identifier selection is reset and for the next data word a new identifier needs to be send. Every identifier requires a certain data section length. If this length is not corresponding with the identifier, the data will be ignored.

Dot Correction (DC)

The AS1122 offers a 6 bit (64 steps) Dot Correction per Output channel. After sending the 8 bit identifier for access to the DC register the device is waiting for 72 bits to receive. If more or less bits are sent the whole dataword will be ignored.

Figure 24: Dot Correction Input Timing Diagram

For n devices in a chain only one identifier is needed to set all n devices to the same register setting.

Figure 25: Dot Correction for N Devices

PWM Data (Greyscale)

To set the PWM, 12 bit (4096 steps) per Output channel can be used. After sending the 8 bit identifier for access to the PWM Data register the device is waiting for 144 bits to receive. If more or less bits are sent the whole dataword will be ignored.

Figure 26: PWM Input Timing Diagram

For N devices in a chain only one identifier needs to be set all n devices to the same register setting.

Figure 27: PWM Data for N Devices

Command Data

The AS1122 offers a command register for setting the configuration of the device. The command register is again accessible via an identifier and is 8 bits long. If more or less bits are sent the whole dataword will be ignored.

Figure 28: Command Input Timing Diagram

Figure 29: Command Data for N Devices

Typical Operating Characteristics

Setting Dot Correction

The AS1122 can perform independent fine-adjustments to the output current of each channel. Dot correction is used to adjust brightness deviations of LEDs connected to the output channels (OUT0:OUT11).

The device powers up with the following default settings: DC = 0 and GS = 0.

The 12 channels can be individually programmed with a 6-bit word for Dot Correction. The channel output can be adjusted in 64 steps from 0% to 100% of the maximum output current (I_{MAX}). The output current for each OUT_n channel can be calculated as:

(EQ1)
$$I_{OUTn} = I_{MAX} \times \frac{DC_n}{63}$$

Where:

- I_{MAX} is the maximum programmable output current for each output;
- DC_n is the programmed dot correction value for output (DC_n = 0 to 63);
- n = 0 to 11

Dot correction data are simultaneously entered for all channels. The complete dot correction data format consists of 12 x 6-bit words, which forms a 72-bit serial data packet and 8-bit for the identifier. Channel data is put on one by one, and the data is clocked in with the MSB first.

LSB MSB 79 72 71 6 5 0 Identifier DC11.5 DC0.5 DC0.0 DC1.0 1100 0001 DC OUT0 DC OUT11 : DC OUT 1

Figure 30: Dot Correction Data Packet Format

The Dot Correction data is only valid if the exact identifier byte was sent. Otherwise the data will be ignored.

Setting Greyscale Brightness (PWM)

The brightness of each channel output can be adjusted using a 12 bits-per-channel PWM control scheme which results in 4096 brightness steps, from 0% to 100% brightness. The brightness level for each output is calculated as:

(EQ2) %Brightness =
$$\frac{\text{GS}_n}{4095} \times 100$$

Where:

- GSn is the programmed greyscale value for output (GSn = 0 to 4095);
- n = 0 to 11 greyscale data for all outputs.
- The device powers up with the following default settings: GS = 0 and DC = 0

The input shift register shifts greyscale data into the greyscale register for all channels simultaneously. The complete greyscale data format consists of 12 x 12 bit words, which forms a 144-bit wide data packet plus the 8 bit for the identifier.

Figure 31: PWM Data Packet Format

MSB 151	144	143		12	11		LSB 0
151	144	140		12			Ū
	Identifier 1100 0010	GS11.11		GS1.0	GS0.11		GS0.0
		GS	OUT11 : GS OI	JT 1		GS OUT0	
		!					

The PWM data is only valid if the exact identifier byte was send. Otherwise the data will be ignored.

Command Data

In the command register of the AS1122 some configuration of the device can be done. After sending the correct identifier the 8 bits of the command register are accessible.

Figure 32: Command Register Format

Bit	Bit Name	Default	Access	Bit Description
7:5	-	000	n/a	
4	Read SID	0	W	0: normal operation 1: read Status Information Register (SID)
3	OPEN Test	0	W	0: no test is running 1: start OPEN test
2	Over Temperature Power Down	0	W	 0: If an overtemperature condition occurs the OUT_n are NOT switched OFF automatically. 1: If an overtemperature condition occurs the OUT_n are switched OFF automatically.
1	Display ON Time	0	W	0: The PWM is running endless 1: The PWM is running for one cycle
0	OEN	0	W	0: This bit must be '0' as well as bit3 of the last valid identifier to turn ON all channels. 1: all channels are OFF

Figure 33: Command Packet Format

Status Information Data (SID)

The AS1122 contains an integrated status information register. After latching the correct identifier with a 16 bit data word the input shift register data is replaced with status information data.

With the next 16 clock cycles the Open LED information, the Overtemperature-Warning and -Error flag as well as the power-ON reset (POR) flag can be read out at pin SDO. The status information data packet is 16 bits wide. Bits 11:0 contain the open LED detection status of each channel. Bit 12 is the overtemperature-warning flag, bit 13 is the overtemperature-error flag and bit 14 indicates if the POR was triggered.

Figure 34: Status Information Data Packet Format

Note(s) and/or Footnote(s):

1. Bit14 (POR) is set to '1' after start-up and after triggering a power-ON reset due to a supply voltage drop. Must be set to '0' manually.

Readback the Status Information Data

To read out the SID the read bit in the command data needs to be set to "1". After the new command data is latched into the device the SID is shifted to the SDO register and will be shifted out with the next running clk cycles on CLKI. After keeping the clk low for the time tlow, the device is reset again and can be programmed with needed information.

Figure 35: Reading of the Status Information Register

Setting Maximum Channel Current

The maximum output current per channel is programmed by a single resistor $R_{IREF'}$ which is placed between pin I_{REF} and GND. The voltage on pin IREF is set by an internal band gap V_{IREF} (1.27V typ). The maximum channel current is equivalent to the current flowing through R_{IREF} multiplied by a factor of 31.5.

The maximum output current is calculated as:

(EQ3)
$$I_{MAX} = \frac{V_{IREF}}{R_{IREF}} \times 31.5$$

Where:

- V_{IREF} = 1.27V;
- R_{IREF} = User-selected external resistor.

Timing for Cascading of N Devices

With the rising edge of CLKI the data will be shifted from SDI into the device. The rising edge of CLKI is shifted through the devices to CLKO. After a factory fixed high-time (100ns) the falling edge of CLKO is triggered and the data are shifted out via SDO. This ensures a synchronous timing between CLKO and SDO. The CLK period (frequency) will stay the same only the duty cycle will be changed.

The fixed high-time will vary with ±30%.

Figure 36: Clock Handling with 5MHz Data-Clock

Figure 37:

Clock Handling with 2MHz Data-Clock

Scrambled PWM

Due to the possibility to interrupt a running PWM cycle the AS1122 is using a scrambled PWM. The scrambled PWM will cause less error as the classical PWM when data is updated during a running PWM cycle.

As an example, we take a look on a system with a 8-bit PWM and three LEDs. The PWM for the red LED is set to 4, for green to 2 and for blue to 6. In the classical approach the red, green and blue channels are high according to their PWM setting.

If this PWM cycle would be interrupted at the 4th clock, the red and the blue LED would be as bright as if the PWM setting were 8. The green LED also would be much brighter than desired.

In the scrambled PWM the ON-times are divided evenly over the whole PWM cycle. So if the running PWM cycle is interrupted, the failure is less effective.

Figure 38: Classic PWM vs. Scrambled PWM

PWM Scheme of AS1122

The AS1122 uses a scrambled PWM scheme. Meaning the PWM value is divide into sub-periods (32 bits wide) and than evenly distributed over the whole PWM cycle. If the PWM setting can not be divided by 32, the rest is added at the beginning of the PWM cycle.

Figure 39: Different PWM Outputs of AS1122

The PWM clock is generated internally and is running with $\rm f_{OSC}$ (10MHz typ.). For a PWM value of 20 the OUT channel is high for 20 PWM-clock pulses (20 \times 100ns) and stays then low for 4076 PWM-clock pulses (4076 \times 100ns). After one PWM cycle (4096 pulses) the cycle is repeated endless until the output channels is turned OFF or updated with new PWM data.

Application Information

Figure 40: Typical Application Circuit

Typical Application: This figure shows the typical application circuit of n devices AS1122 connected in a chain.

Package Drawings & Markings

Figure 41: 24-Pin QFN 4 × 4mm Package

Note(s) and/or Footnote(s):

- 1. Dimensions & toleranceing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension b applies to metallized terminal and is measured between 0.25mm and 0.30mm from terminal tip. Dimension L1 represents terminal full back from package edge up to 0.15mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.
- 6. N is the total number of terminals.

Figure 42: 24-Pin QFN 4 × 4mm Marking

Figure 43: Packaging Code YYWWXZZ

YY	ww	X	ZZ	@
Last two digits of the manufacturing year	Manufacturing week	Plant identifier	Free choice / traceability code	Sublot identifier

Ordering & Contact Information

The device is available as the standard products shown in Figure 44.

Figure 44: Ordering Information

Ordering Code	Marking	Description	Delivery Form	Package
AS1122-BQFT	AS1122	12-Channel LED Driver with Dot Correction and Greyscale PWM	Tape and Reel	24-pin QFN 4 × 4mm

Buy our products or get free samples online at: www.ams.com/ICdirect

Technical Support is available at: www.ams.com/Technical-Support

Provide feedback about this document at: www.ams.com/Document-Feedback

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: www.ams.com/contact

Headquarters

ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten Austria, Europe

Tel: +43 (0) 3136 500 0

Website: www.ams.com

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

Document Status

Document Status	Product Status	Definition
Product Preview	Pre-Development	Information in this datasheet is based on product ideas in the planning phase of development. All specifications are design goals without any warranty and are subject to change without notice
Preliminary Datasheet	Pre-Production	Information in this datasheet is based on products in the design, validation or qualification phase of development. The performance and parameters shown in this document are preliminary without any warranty and are subject to change without notice
Datasheet	Production	Information in this datasheet is based on products in ramp-up to full production or full production which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade
Datasheet (discontinued)	Discontinued	Information in this datasheet is based on products which conform to specifications in accordance with the terms of ams AG standard warranty as given in the General Terms of Trade, but these products have been superseded and should not be used for new designs

Revision Information

Changes from 1.00 to current revision 1-02 (2015-May-22)	Page			
1.00 to 1-01 (2015-May-21)				
Content of austriamicrosystems datasheet was converted to latest ams design (including update of all graphics)				
Added benefits to Figure 1	1			
Updated Figure 6	6			
Updated Figure 23	18			
Updated Setting Greyscale Brightness (PWM)	23			
Updated Figure 43 (Packaging Code)	32			
Updated Figure 44 (Ordering Information)	33			
1-01 (2015-May-21) to 1-02 (2015-May-22)				
Updated Setting Greyscale Brightness (PWM)	23			

Note(s) and/or Footnote(s):

1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.

2. Correction of typographical errors is not explicitly mentioned.

Content Guide

- 1 General Description
- 1 Key Benefits & Features
- 1 Applications
- 2 Block Diagram
- 3 Pin Assignments
- 5 Absolute Maximum Ratings
- 6 Electrical Characteristics
- 8 Typical Operating Characteristics

14 Detailed Description

- 14 Timing Characteristics
- 16 Timing Diagrams
- 16 Serial Interface
- 18 Register Access
- 19 Dot Correction (DC)
- 20 PWM Data (Greyscale)
- 21 Command Data
- 22 Typical Operating Characteristics
- 22 Setting Dot Correction
- 23 Setting Greyscale Brightness (PWM)
- 24 Command Data
- 25 Status Information Data (SID)
- 26 Readback the Status Information Data
- 26 Setting Maximum Channel Current
- 27 Timing for Cascading of N Devices
- 28 Scrambled PWM
- 29 PWM Scheme of AS1122
- **30** Application Information
- 31 Package Drawings & Markings
- 33 Ordering Information
- 34 RoHS Compliant & ams Green Statement
- 35 Copyrights & Disclaimer
- 36 Document Status
- 37 Revision Information