Data Sheet August 2004 # 50A, 50V, 0.022 Ohm, Logic Level, N-Channel Power MOSFETs These are logic-level N-channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use with logic-level (5V) driving sources in applications such as programmable controllers, automotive switching, switching regulators, switching converters, motor relay drivers and emitter switches for bipolar transistors. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V - 5V range, thereby facilitating true on-off power control directly from integrated circuit supply voltages. Formerly developmental type TA09872. ## **Ordering Information** | PART NUMBER | PACKAGE | BRAND | | |-------------|----------|---------|--| | RFP50N05L | TO-220AB | F50N05L | | NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in the tape and reel, i.e., RFP50N05L9A. ## **Features** - 50A, 50V - $r_{DS(ON)} = 0.022\Omega$ - UIS SOA Rating Curve (Single Pulse) - · Design Optimized for 5V Gate Drive - · Can be Driven Directly from CMOS, NMOS, TTL Circuits - Compatible with Automotive Drive Requirements - · SOA is Power Dissipation Limited - · Nanosecond Switching Speeds - Linear Transfer Characteristics - High Input Impedance - · Majority Carrier Device - Related Literature - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards" ## Symbol ## **Packaging** ## JEDEC TO-220AB ## RFP50N05L # **Absolute Maximum Ratings** $T_C = 25^{\circ}C$, Unless Otherwise Specified | | RFP50N05L | UNITS | |--|------------------------|-------------------| | Drain to Source Voltage (Note 1)V _{DS} | 50 | V | | Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)V _{DGR} | 50 | V | | Continuous Drain Current | 50
130 | A
A | | Gate to Source Voltage | ±10 | V | | $\label{eq:maximum Power Dissipation} \begin{tabular}{ll} Maximum Power Dissipation & P_D \\ Above T_C = 25^0 C, Derate Linearly & & & & & \\ \end{tabular}$ | 110
0.88 | W/ _o C | | Single Pulse Avalanche Energy Rating | Refer to UIS SOA Curve | - | | Operating and Storage Temperature | -55 to 150 | °C | | Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10sT _L Package Body for 10s, See Techbrief 334T _{pkg} | 300
260 | °C
°C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. $T_J = 25^{\circ}C$ to $125^{\circ}C$. # **Electrical Specifications** $T_C = 25^{\circ}C$, Unless Otherwise Specified | Drain to Source Breakdown Voltage BVDSS ID = 250μA, VGS = 0V (Figure 10) 50 - Gate Threshold Voltage VGS(TH) VGS(TH) VGS = VDS, ID = 250μA (Figure 9) 1 - Zero Gate Voltage Drain Current IDSS VDS = Rated BVDSS, VGS = 0 - - - VDS = 0.8 x Rated BVDSS, VGS = 0, TC = 150°C - - - - Gate to Source Leakage Current IGSS VGS = ±10V, VDS = 0V - - - Drain to Source On Resistance (Note 2) TDS(ON) ID = 50A, VGS = 5V (Figure 7) - - - Turn-On Time t(ON) VGS = 5V, RGS = 2.5Ω, RL = 1Ω (Figures 12, 15, 16) - - - Turn-On Delay Time tp(OFF) - - - - - Fall Time tf tg - - - - - - Turn-Off Time t(OFF) - - - - - - - - - - - - - - - | - 2
25
250
±100
0.022
0.027 | V
V
μΑ
μΑ
nA | |--|--|--------------------------| | | 25
250
±100
0.022 | μA
μA
nA | | $V_{DS} = 0.8 \text{ x Rated BV}_{DSS}, V_{GS} = 0, T_{C} = 150^{\circ}\text{C} \qquad - $ | 250
±100
0.022 | μA
nA | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ±100 | nA | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.022 | | | | | Ω | | Turn-On Time $t_{(ON)}$ $V_{GS} = 5V$, $R_{GS} = 2.5\Omega$, $R_L = 1\Omega$ - <t< td=""><td>0.027</td><td></td></t<> | 0.027 | | | Turn-On Delay Time tD(ON) Rise Time tr Turn-Off Delay Time tD(OFF) Fall Time tf | | Ω | | Turn-On Delay Time tD(ON) - 15 Rise Time tr - 50 Turn-Off Delay Time tD(OFF) - 50 Fall Time tf - 15 | 100 | ns | | Turn-Off Delay Time t _D (OFF) Fall Time t _f | - | ns | | Fall Time t _f - 15 | - | ns | | | - | ns | | Turn-Off Time t _(OFF) | - | ns | | | 100 | ns | | Total Gate Charge $ Q_{G(TOT)} V_{GS} = 0 \text{ to } 10V \qquad \qquad V_{DD} = 40V, \ I_D = 50A \qquad - $ | 140 | nC | | Gate Charge at 5V $Q_{G(5)}$ $V_{GS} = 0$ to 5V $R_L = 0.8\Omega$ (Figures 17, 18) | 80 | nC | | Threshold Gate Charge $Q_{G(th)}$ $V_{GS} = 0$ to 1V | 6 | nC | | Thermal Resistance Junction to Case $R_{ heta JC}$ | 1.14 | °C/W | | Thermal Resistance Junction to Ambient $R_{\theta JA}$ | 80 | °C/W | ## **Source to Drain Diode Specifications** | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |--|-----------------|--|-----|-----|------|-------| | Source to Drain Diode Voltage (Note 2) | V_{SD} | I _{SD} = 50A | - | - | 1.5 | V | | Diode Reverse Recovery Time | t _{rr} | $I_{SD} = 50A$, $dI_{SD}/dt = 100A/\mu s$ | - | - | 1.25 | ns | RFP50N05L Rev. C #### NOTES: - 2. Pulsed: pulse duration = $300\mu s$ maximum, duty cycle = 2%. - 3. Repititive rating: pulse width limited by maximum junction temperature. ©2004 Fairchild Semiconductor Corporation ## **Typical Performance Curves** FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 3. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. SATURATION CHARACTERISTICS FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE FIGURE 4. UNCLAMPED INDUCTIVE SWITCHING SAFE OPERATING AREA FIGURE 6. TRANSFER CHARACTERISTICS ©2004 Fairchild Semiconductor Corporation # Typical Performance Curves (Continued) FIGURE 7. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE FIGURE 9. NORMALIZED GATE THRESHOLD VOLTAGE FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 8. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT # **Test Circuits and Waveforms** FIGURE 13. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 14. UNCLAMPED ENERGY WAVEFORMS FIGURE 15. SWITCHING TIME TEST CIRCUIT FIGURE 16. RESISTIVE SWITCHING WAVEFORMS FIGURE 17. GATE CHARGE TEST CIRCUIT FIGURE 18. GATE CHARGE WAVEFORMS ©2004 Fairchild Semiconductor Corporation ## **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | | $ACEx^{TM}$ | FAST® | ISOPLANAR™ | Power247™ | SuperFET™ | |------------------------------------|-----------------------------------|--------------------------------|---------------------|---------------------|------------------------| | | ActiveArray™ | FASTr™ | LittleFET™ | PowerSaver™ | SuperSOT™-3 | | | Bottomless™ | FPS™ | $MICROCOUPLER^{TM}$ | PowerTrench® | SuperSOT™-6 | | | CoolFET™ | FRFET™ | MicroFET™ | QFET® | SuperSOT™-8 | | | $CROSSVOLT^{\text{TM}}$ | GlobalOptoisolator™ | MicroPak™ | QS^{TM} | SyncFET™ | | | DOME™ | GTO™ . | MICROWIRE™ | QT Optoelectronics™ | TinyLogic [®] | | | EcoSPARK™ | HiSeC™ | MSX TM | Quiet Series™ | TINYOPTO™ | | | E ² CMOS TM | I ² C TM | MSXPro™ | RapidConfigure™ | TruTranslation™ | | | EnSigna™ | <i>i-</i> Lo [™] | OCX^{TM} | RapidConnect™ | UHC™ | | | FACT™ | ImpliedDisconnect™ | OCXPro™ | μSerDes™ | UltraFET® | | FACT Quiet Series™ | | OPTOLOGIC® | SILENT SWITCHER® | VCX TM | | | ACIOSS LIE DORIG. AIOGIG LIE WOIG. | | OPTOPLANAR™ | SMART START™ | | | | | | PACMAN™ | SPM TM | | | | | | | <u> </u> | | | #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. POPTM #### LIFE SUPPORT POLICY $Programmable \ Active \ Droop^{\tiny\mathsf{TM}}$ FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Stealth™ #### PRODUCT STATUS DEFINITIONS ## **Definition of Terms** | Datasheet Identification | Product Status | Definition | | | |--------------------------|---------------------------|---|--|--| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | | | Rev. I11