
DDR Termination Regulator

General Description

The RT9089A is a sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RT9089A possesses a high speed operating amplifier that provides fast load transient response and only requires a minimum $10\mu F$ ceramic output capacitor. The RT9089A supports remote sensing functions and all features required to power the DDRI/DDRII/DDRIII and Low Power DDRIII/DDRIV VTT bus termination according to the JEDEC specification.

The RT9089A is available in the thermal efficient package, WDFN-10L 2x2.

Ordering Information

Note:

***Empty means Pin1 orientation is Quadrant 1

Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Features

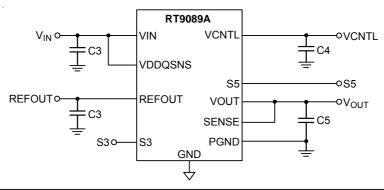
VIN Input Voltage Range: 1.1V to 3.5V
VCNTL Input Voltage Range: 2.9V to 5.5V

- Support Ceramic Capacitors
- 10mA Source/Sink Reference Output
- Meet DDRI, DDRII JEDEC Spec
- Support DDRIII, Low Power DDRIII/DDRIV VTT Applications
- Soft-Start Function
- UVLO and OCP Protection
- Thermal Shutdown

Applications

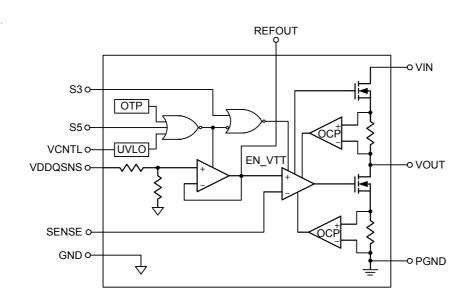
- Notebook/Desktop/Server
- Telecom/Datacom, GSM Base Station, LCD-TV/PDP-TV, Copier/Printer, Set-Top Box

Marking Information



Pin Configuration

Simplified Application Circuit


Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VDDQSNS	Reference input.
2	VIN	Power input of the regulator.
3	VOUT	Power output of the regulator.
4	PGND	Power ground of the regulator.
5	SENSE	Voltage sense input for the regulator. Connect to positive terminal of the output capacitor or the load.
6	REFOUT	Reference output. Connect to GND through a 0.1µF ceramic capacitor.
7	S3	S3 signal input.
9	S5	S5 signal input.
10	VCNTL	Control voltage input. Connect this pin to the 3.3V or 5V power supply. A ceramic decoupling capacitor with a value $4.7\mu F$ is required.
8, 11 (Exposed Pad)	GND	Analog ground. Connect to negative terminal of the output capacitor. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Functional Block Diagram

Operation

The RT9089A is a linear sink/source DDR termination regulator with current capability up to 2A. The RT9089A builds in a high-side N-MOSFET which provides current sourcing and a low-side N-MOSFET which provides current sinking. All the control circuits are supplied by the power VCNTL. In normal operation, the error amplifier OP adjusts the gate driving voltage of the power MOSFET to achieve SENSE voltage well tracking the VDDQSNS/2 voltage.

Both the source and sink currents are detected by the internal sensing resistor, and the OCP function will work to limit the current to a designed value when overload happens. Furthermore, the current will be folded back to be one half if VOUT is out of the power good window.

Buffer

This function provides REFOUT output equal to VDDQSNS/2 with 10mA source/sink current capability.

Control Logic

This block includes VCNTL UVLO, VDDQSNS UVLO and Enable/Disable functions, and provides logic control to the whole chip.

Thermal Protection

Both the high-side and low-side power MOSFETs will be turned off when the junction temperature is higher than typically 160°C, and be released to normal operation when junction temperature falls below 120°C typically.

Power State Control

The input pins S3 and S5 of RT9089A, provide simple control of the power state. Table 1 describes S3/S5 terminal logic state and corresponding state of REFOUT/VOUT outputs. VOUT is turn-off and discharged to GND in state S3. When both S5 and S3 pins are LOW, the power state is set to S4/S5. In S4/S5 state, all the outputs are turn-off and discharged to GND.

Table 1. S3 and S5 Control Table

STATE	S3	S 5	REFOUT	VOUT
S0	HI	HI	ON	ON
S3	LO	HI	ON	OFF (Discharge)
S4/S5	LO	LO	OFF (Discharge)	OFF (Discharge)

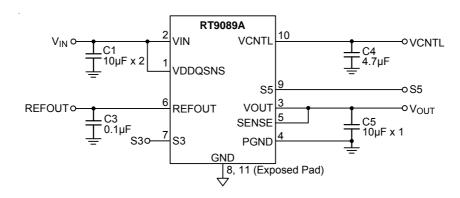
Absolute Maximum Ratings (Note 1)

Supply Voltage, VIN, VCNTL	-0.3V to 6V
• Input Voltage, S3, VDDQSNS, SENSE, S5	-0.3V to 6V
Output Voltage, VOUT, REFOUT	-0.3V to 6V
 Power Dissipation, P_D @ T_A = 25°C 	
WDFN-10L 2x2	1.25W
Package Thermal Resistance (Note 2)	
WDFN-10L 2x2, θ_{JA}	
WDFN-10L 2x2, θ_{JC}	7°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
Recommended Operating Conditions (Note 4)	
Control Input Voltage, VCNTL	2.9V to 5.5V

Electrical Characteristics

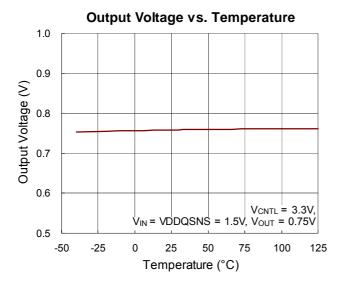
 $(V_{IN} = V_{VDDQSNS} = 1.5V, V_{CNTL} = 3.3V, V_{SENSE} = 0.75V, C_{OUT} = 10 \mu F x 1, T_A = 25 ^{\circ}C, unless otherwise specified)$

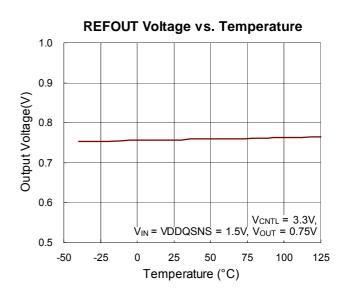
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Supply Current							
VCNTL Supply Current	IVCNTL	V _{S3} = VCNTL, V _{S5} = VCNTL, no load		0.7	1	mA	
VCNTL Shutdown Current	ISHDN_VCNTL	$V_{S3} = 0V$, $V_{S5} = 0V$, no load		65	80	μА	
		V _{S3} = 0V, V _{S5} = VCNTL, no load		200	400	μА	
VIN Supply Current	I _{VIN}	V_{S3} = VCNTL, V_{S5} = VCNTL, no load		1	50	μΑ	
VIN Shutdown Current	I _{SHDN_VIN}	$V_{S3} = 0V, V_{S5} = 0V, \text{ no load}$		0.1	50	μА	
Output							
VOUT Output Voltage	V _{OUT}	V_{IN} = 1.5V, $V_{VDDQSNS}$ = 1.5V, I_{OUT} = 0A		0.75		V	
		V_{IN} = 1.35V, $V_{VDDQSNS}$ = 1.35V, I_{OUT} = 0A		0.675		V	
		V _{IN} = 1.2V, V _{VDDQSNS} = 1.2V, I _{OUT} = 0A		0.6		V	
VOUT Output Voltage Offset	V _{OUT_} os	I _{OUT} = ±2A, V _{IN} = 1.5V, V _{REFOUT} = 0.75V	-25		25		
		I _{OUT} = ±2A, V _{IN} = 1.35V, V _{REFOUT} = 0.675V	-25		25	mV	
		I _{OUT} = ±2A, V _{IN} = 1.2V, V _{REFOUT} = 0.6V	-25		25		

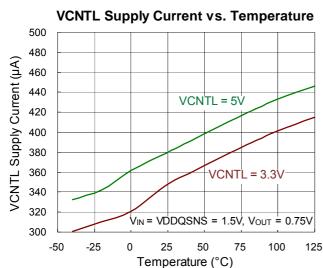

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
VOUT Source Current Lim	t I _{LIM_VOUT_SR}	VOUT in PGOOD window	2			Α	
VOUT Sink Current Limit	ILIM_VOUT_SK	VOUT in PGOOD window	2			Α	
VOUT Discharge Resistance	RDISCHARGE	$V_{VDDQSNS} = 0V, V_{OUT} = 0.3V, V_{S3} = 0V$		18	25	Ω	
VDDQSNS and REFOUT							
VDDQSNS Input Current	I _{VDDQSNS}	V _{VDDQSNS} = 1.8V		30		μΑ	
VDDQSNS Voltage Range	V _{VDDQSNS}		0.5		1.8	V	
		-10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.5V	-15		15		
REFOUT Voltage Toleranc to V _{VDDQSNS}	VTOL_REFOUT	-10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.35V	-15		15	mV	
		-10mA < I _{REFOUT} < 10mA, V _{VDDQSNS} = 1.2V	-12		12		
REFOUT Source Current Limit	I _{LIM_REFOUT_SR}	V _{REFOUT} = 0V	10	40		mA	
REFOUT Sink Current Lim	it I _{LIM_REFOUT_SK}	V _{REFOUT} = VDDQSNS / 2 + 1V	10	40		mA	
UVLO/S3/S5							
UVLO Threshold	Vinualiza	Rising	2.5	2.7	2.85	V	
OVLO Tilleshold	Vuvlo_vcntl	Hysteresis		120		mV	
S3/S5 Input Logic-Hig	h V _{IN_H}		1.7			V	
Voltage Logic-Lov	v V _{IN_L}				0.3		
Thermal Shutdown							
Thermal Shutdown	Top	Shutdown temperature		160		- °C	
Threshold	T _{SD}	Hysteresis		15			

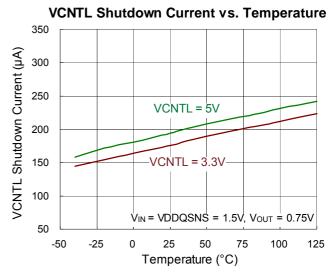
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at T_A = 25°C on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

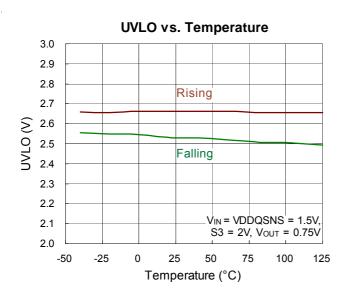
Copyright © 2017 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

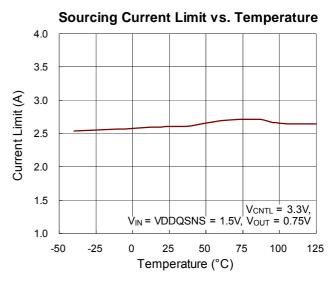


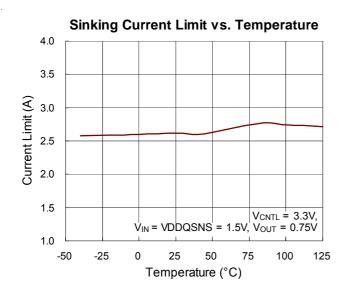

Typical Application Circuit

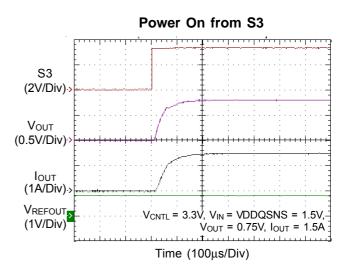


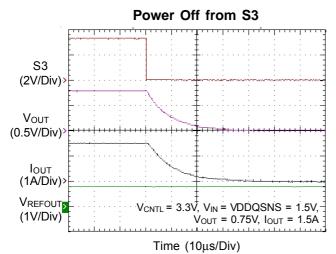


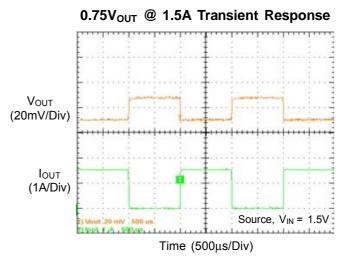

Typical Operating Characteristics

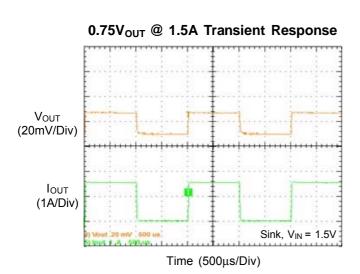









Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



Application Information

The RT9089A is a 2A sink/source tracking termination regulator. It is specifically designed for low-cost and lowexternal component count system such as notebook PC applications. The RT9089A possesses a high speed operating amplifier that provides fast load transient response and only requires two 10µF ceramic input capacitor and a 10μF ceramic output capacitors.

Capacitor Selection

Good bypassing is recommended from VLDOIN to GND to help improve AC performance. A 10µF or greater input capacitor located as close as possible to the IC is recommended. The input capacitor must be located at a distance of less than 0.5 inches from the VLDOIN pin of the IC.

Adding a 1µF ceramic capacitor close to the VIN pin and it should be kept away from any parasitic impedance from the supply power. For stable operation, the total capacitance of the ceramic capacitor at the VTT output terminal must be larger than 10μF. The RT9089A is designed specifically to work with low ESR ceramic output capacitor in space saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability and PSRR. The output capacitor should be located near the VTT output terminal pin as close as possible.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

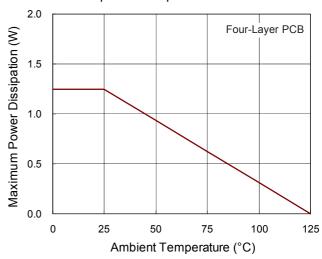
DS9089A-03 April 2017

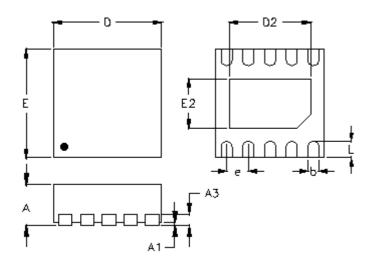
where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

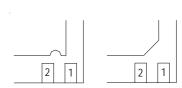
For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WDFN-10L 2x2 package, the thermal resistance, θ_{JA} , is 80°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25$ °C can be calculated by the following formula:

$$P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (80^{\circ}C/W) = 1.25W$$
 for WDFN-10L 2x2 package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.




Figure 1. Derating Curve of Maximum Power Dissipation


Copyright ©2017 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

Outline Dimension

<u>DETAIL A</u>

Pin #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
А3	0.175	0.250	0.007	0.010	
b	0.150	0.250	0.006	0.010	
D	1.900	2.100	0.075	0.083	
D2	1.450	1.550	0.057	0.061	
E	1.900	2.100	0.075	0.083	
E2	0.850	0.950	0.033	0.037	
е	0.400		0.0	116	
L	0.250	0.350	0.010	0.014	

W-Type 10L DFN 2x2 Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.